alpha
and scale parameter lambda
.dlogis.rayleigh(x, alpha, lambda, log = FALSE)
plogis.rayleigh(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlogis.rayleigh(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.rayleigh(n, alpha, lambda)
length(n) > 1
, the length
is taken to be the number required.dlogis.rayleigh
gives the density,
plogis.rayleigh
gives the distribution function,
qlogis.rayleigh
gives the quantile function, and
rlogis.rayleigh
generates random deviates.
where $\alpha$ and $\lambda$ are the shape
and scale
parameters, respectively.
.Random.seed
about random number; slogis.rayleigh
for ExpExt survival / hazard etc. functions
## Load data sets
data(stress)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(stress)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.4779388, lambda.est = 0.2141343
dlogis.rayleigh(stress, 1.4779388, 0.2141343, log = FALSE)
plogis.rayleigh(stress, 1.4779388, 0.2141343, lower.tail = TRUE, log.p = FALSE)
qlogis.rayleigh(0.25, 1.4779388, 0.2141343, lower.tail=TRUE, log.p = FALSE)
rlogis.rayleigh(30, 1.4779388, 0.2141343)
Run the code above in your browser using DataLab