# simulate dummy data
time.points = 9 # time series length
map.width = 5 # square map width
coords = expand.grid(x = 1:map.width, y = 1:map.width) # coordinate matrix
## create empty spatiotemporal variables:
X <- matrix(NA, nrow = nrow(coords), ncol = time.points) # response
Z <- matrix(NA, nrow = nrow(coords), ncol = time.points) # predictor
# setup first time point:
Z[, 1] <- .05*coords[,"x"] + .2*coords[,"y"]
X[, 1] <- .5*Z[, 1] + rnorm(nrow(coords), 0, .05) #x at time t
## project through time:
for(t in 2:time.points){
Z[, t] <- Z[, t-1] + rnorm(map.width^2)
X[, t] <- .2*X[, t-1] + .1*Z[, t] + .05*t + rnorm(nrow(coords), 0 , .25)
}
## Pixel CLS
tmp.df = data.frame(x = X[1, ], t = nrow(X), z = Z[1, ])
CLS <- fitCLS(x ~ z, data = tmp.df)
print(CLS)
summary(CLS)
residuals(CLS)
coef(CLS)
logLik(CLS)
fitted(CLS)
# plot(CLS) # doesn't work
## Pixel AR
AR <- fitAR(x ~ z, data = tmp.df)
print(AR)
summary(AR)
coef(AR)
residuals(AR)
logLik(AR)
fitted(AR)
# plot(AR) # doesn't work
## Map CLS
CLS.map <- fitCLS_map(X, coords, y ~ Z, X.list = list(Z = Z), lag.x = 0, resids.only = TRUE)
print(CLS.map)
summary(CLS.map)
residuals(CLS.map)
# plot(CLS.map)# doesn't work
CLS.map <- fitCLS_map(X, coords, y ~ Z, X.list = list(Z = Z), lag.x = 0, resids.only = FALSE)
print(CLS.map)
summary(CLS.map)
coef(CLS.map)
residuals(CLS.map)
# logLik(CLS.map) # doesn't work
fitted(CLS.map)
# plot(CLS.map) # doesn't work
## Map AR
AR.map <- fitAR_map(X, coords, y ~ Z, X.list = list(Z = Z), resids.only = TRUE)
print(AR.map)
summary(AR.map)
residuals(AR.map)
# plot(AR.map)# doesn't work
AR.map <- fitAR_map(X, coords, y ~ Z, X.list = list(Z = Z), resids.only = FALSE)
print(AR.map)
summary(AR.map)
coef(AR.map)
residuals(AR.map)
# logLik(AR.map) # doesn't work
fitted(AR.map)
# plot(AR.map) # doesn't work
Run the code above in your browser using DataLab