# Make the basic plot
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg"
)
# \donttest{
.old_wd <- setwd(tempdir())
# Save a high-resolution image file to specified directory
ggplot2::ggsave("nicescatterplothere.pdf", width = 7,
  height = 7, unit = "in", dpi = 300
) # change for your own desired path
setwd(.old_wd)
# Change x- and y- axis labels
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  ytitle = "Miles/(US) gallon",
  xtitle = "Weight (1000 lbs)"
)
# Have points "jittered", loess method
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  has.jitter = TRUE,
  method = "loess"
)
# Change the transparency of the points
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  alpha = 1
)
# Remove points
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  has.points = FALSE,
  has.jitter = FALSE
)
# Add confidence band
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  has.confband = TRUE
)
# Set x- and y- scales manually
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  xmin = 1,
  xmax = 6,
  xby = 1,
  ymin = 10,
  ymax = 35,
  yby = 5
)
# Change plot colour
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  colours = "blueviolet"
)
# Add correlation coefficient to plot and p-value
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  has.r = TRUE,
  has.p = TRUE
)
# Change location of correlation coefficient or p-value
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  has.r = TRUE,
  r.x = 4,
  r.y = 25,
  has.p = TRUE,
  p.x = 5,
  p.y = 20
)
# Plot by group
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl"
)
# Use full range on the slope/confidence band
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  has.fullrange = TRUE
)
# Remove lines
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  has.line = FALSE
)
# Change order of labels on the legend
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  groups.order = c(8, 4, 6)
)
# Change legend labels
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  groups.labels = c("Weak", "Average", "Powerful")
)
# Warning: This applies after changing order of level
# Add a title to legend
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  legend.title = "cylinders"
)
# Plot by group + manually specify colours
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  colours = c("burlywood", "darkgoldenrod", "chocolate")
)
# Plot by group + use different line types for each group
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  has.linetype = TRUE
)
# Plot by group + use different point shapes for each group
nice_scatter(
  data = mtcars,
  predictor = "wt",
  response = "mpg",
  group = "cyl",
  has.shape = TRUE
)
# }
Run the code above in your browser using DataLab