Last chance! 50% off unlimited learning
Sale ends in
biv.betab
fits dependent (logit) linear regression models to a
bivariate beta-binomial distribution.
biv.betab(
freq,
x = NULL,
p,
depend = TRUE,
print.level = 0,
typsize = abs(p),
ndigit = 10,
gradtol = 1e-05,
stepmax = 10 * sqrt(p %*% p),
steptol = 1e-05,
iterlim = 100,
fscale = 1
)
A list of class bivbetab
is returned.
A matrix containing four columns corresponding to 00, 01, 10, and 11 responses.
A matrix of explanatory variables, containing pairs of columns, one for each response, and the same number of rows as freq.
Initial parameter estimates: intercept, dependence (if depend is TRUE, and one for each pair of columns of x.
If FALSE, the independence (logistic) model is fitted.
Arguments for nlm.
Arguments for nlm.
Arguments for nlm.
Arguments for nlm.
Arguments for nlm.
Arguments for nlm.
Arguments for nlm.
Arguments for nlm.
J.K. Lindsey
y <- matrix( c( 2, 1, 1,13,
4, 1, 3, 5,
3, 3, 1, 4,
15, 8, 1, 6),ncol=4,byrow=TRUE)
first <- c(0,0,1,1)
second <- c(0,1,0,1)
self <- cbind(first,second)
other <- cbind(second,first)
biv.betab(y,cbind(self,other),p=c(-1,2,1,1))
# independence
biv.betab(y,cbind(self,other),p=c(-1,1,1),dep=FALSE)
Run the code above in your browser using DataLab