powered by
Returns optimism correction for absolute fit values
boot_model( formula, data, B = 200, fit_function = "lm", metric = if (length(unique(data[, as.character(formula)[2]])) == 2) "AUC" else "RMSE", predict.control = list(NULL), ... )
Optimism correction values for the selected performance metric
An object of class "formula" describing the model to be validated
A data frame containing the variables specified in formula argument
Number of bootstrap samples
Name of the model fitting function
Performance metric to estimate: RMSE, MSE, MAE or AUC
Named list of arguments to pass to the predict function of the model
Further arguments passed to the model fitting function
boot_model(Petal.Length ~ Sepal.Width + Species, data=iris)
Run the code above in your browser using DataLab