Learn R Programming

repmod (version 0.4.11)

boot_model: Bootstrap optimism correction for models

Description

Returns optimism correction for absolute fit values

Usage

boot_model(
  formula,
  data,
  B = 200,
  fit_function = "lm",
  metric = if (length(unique(data[, as.character(formula)[2]])) == 2) "AUC" else "RMSE",
  predict.control = list(NULL),
  ...
)

Value

Optimism correction values for the selected performance metric

Arguments

formula

An object of class "formula" describing the model to be validated

data

A data frame containing the variables specified in formula argument

B

Number of bootstrap samples

fit_function

Name of the model fitting function

metric

Performance metric to estimate: RMSE, MSE, MAE or AUC

predict.control

Named list of arguments to pass to the predict function of the model

...

Further arguments passed to the model fitting function

Examples

Run this code
boot_model(Petal.Length ~ Sepal.Width + Species, data=iris)

Run the code above in your browser using DataLab