# Examples are for demonstration and are not meaningful
# Coxph model with 90% CI
data("pembrolizumab")
rm_uvsum(response = c('os_time','os_status'),
covs=c('age','sex','baseline_ctdna','l_size','change_ctdna_group'),
data=pembrolizumab,CIwidth=.9)
# Linear model with default 95% CI
rm_uvsum(response = 'baseline_ctdna',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab)
# Logistic model with default 95% CI
rm_uvsum(response = 'os_status',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab,family = binomial)
# Poisson models returned as model list
mList <- rm_uvsum(response = 'baseline_ctdna',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab, returnModels=TRUE)
#'
# GEE on correlated outcomes
data("ctDNA")
rm_uvsum(response = 'size_change',
covs=c('time','ctdna_status'),
gee=TRUE,
id='id', corstr="exchangeable",
family=gaussian("identity"),
data=ctDNA,showN=TRUE)
Run the code above in your browser using DataLab