# NOT RUN {
ExperimentNames=c("EUBAS","R1UCLM","R2UCLM","R3UCLM")
ShortExperimentNames=c("E1","E2","E3","E4")
Metrics=c("Comprehension","Modification")
Type=c("4G", "4G", "4G", "4G")
Groups=c("A","B","C","D")
StudyID="S2"
Control="SC"
# Obtain experimental data from a file and put in wide format
dataset2= KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14TOSEM
ReshapedData=ExtractExperimentData(dataset2, ExperimentNames=ExperimentNames,
idvar="ParticipantID",timevar="Period",ConvertToWide=TRUE)
# Calculate the correlations for each sequence group and each metric.
CalculateRLevel1(Dataset=ReshapedData[[1]], StudyID, Groups=c("A","B","C","D"),
ExperimentName=ShortExperimentNames[1],Metrics,Type=Type[1],Control)
# A tibble: 8 x 15
# # A tibble: 8 x 15
# Study Exp Group Metric Id n ControlFirst var1 var2
# <chr> <chr> <chr> <chr> <chr> <int> <lgl> <dbl> <dbl>
# 1 S2 E1 A Compr<U+2026> S2E1A 6 FALSE 0.0183 0.0163
# 2 S2 E1 B Compr<U+2026> S2E1B 6 TRUE 0.0201 0.0326
# 3 S2 E1 C Compr<U+2026> S2E1C 6 FALSE 0.00370 0.0155
# 4 S2 E1 D Compr<U+2026> S2E1D 6 TRUE 0.0173 0.0201
# 5 S2 E1 A Modif<U+2026> S2E1A 6 FALSE 0.0527 0.0383
# 6 S2 E1 B Modif<U+2026> S2E1B 6 TRUE 0.0185 0.0482
# 7 S2 E1 C Modif<U+2026> S2E1C 6 FALSE 0.00655 0.0244
# 8 S2 E1 D Modif<U+2026> S2E1D 6 TRUE 0.0222 0.0266
# # <U+2026> with 6 more variables: varp <dbl>, ControlVarProp <dbl>,
# # VarProp <dbl>, vardiff <dbl>, r <dbl>, r.p <dbl>
# }
Run the code above in your browser using DataLab