# NOT RUN {
#
ShortExperimentNames=c("E1","E2","E3","E4")
FullExperimentNames=c("EUBAS","R1UCLM","R2UCLM","R3UCLM")
Metrics=c("Comprehension","Modification")
Groups=Groups=c("A","B","C","D")
Type=c(rep("4G",4))
StudyID="S2"
Control="SC"
# Obtain experimental data from each file and put in wide format
dataset2= KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14TOSEM
ReshapedData=ExtractExperimentData(dataset2, ExperimentNames=FullExperimentNames,
idvar="ParticipantID",timevar="Period",ConvertToWide=TRUE)
# Calculate the correlations for each sequence group and each metric in each experiment
ConstructLevel1ExperimentRData(Data=ReshapedData, StudyID=StudyID,
ExperimentNames=ShortExperimentNames, Groups=Groups, Metrics=Metrics, Type=Type,
Control=Control
)
# # A tibble: 32 x 15
# Study Exp Group Metric Id n ControlFirst var1 var2 varp
# <chr> <chr> <chr> <chr> <chr> <int> <lgl> <dbl> <dbl> <dbl>
# 1 S2 E1 A Compr<U+2026> S2E1A 6 FALSE 0.0183 0.0163 0.0173
# 2 S2 E1 B Compr<U+2026> S2E1B 6 TRUE 0.0201 0.0326 0.0263
# 3 S2 E1 C Compr<U+2026> S2E1C 6 FALSE 0.00370 0.0155 0.00962
# 4 S2 E1 D Compr<U+2026> S2E1D 6 TRUE 0.0173 0.0201 0.0187
# 5 S2 E1 A Modif<U+2026> S2E1A 6 FALSE 0.0527 0.0383 0.0455
# 6 S2 E1 B Modif<U+2026> S2E1B 6 TRUE 0.0185 0.0482 0.0333
# 7 S2 E1 C Modif<U+2026> S2E1C 6 FALSE 0.00655 0.0244 0.0155
# 8 S2 E1 D Modif<U+2026> S2E1D 6 TRUE 0.0222 0.0266 0.0244
# 9 S2 E2 A Compr<U+2026> S2E2A 6 FALSE 0.0194 0.0425 0.0309
# 10 S2 E2 B Compr<U+2026> S2E2B 6 TRUE 0.0198 0.0192 0.0195
# # <U+2026> with 22 more rows, and 5 more variables: ControlVarProp <dbl>,
# # VarProp <dbl>, vardiff <dbl>, r <dbl>, r.p <dbl>
# }
Run the code above in your browser using DataLab