Learn R Programming

reproducer (version 0.4.0)

ExtractSummaryStatisticsRandomizedExp: ExtractSummaryStatisticsRandomizedExp

Description

This function extracts data obtained from the lme4 package lmer function. It assumes a simple randomized experiment with each element having one or more repeated measures. It outputs the mean together with its standard error and confidence interval bounds.

Usage

ExtractSummaryStatisticsRandomizedExp(lmeRA, N, alpha = 0.05)

Arguments

lmeRA

The output from the lmer function

N

The total number of observations

alpha

the probability level to be used when constructing the confidence interval bounds.

Value

REA.Summary A dataframe holding the number of observations N, the overall mean value as its standard error reported as by the lmer function, and its confidence interval bounds.

Examples

Run this code
# NOT RUN {
ShortExperimentNames=c("E1","E2","E3","E4")
FullExperimentNames=c("EUBAS","R1UCLM","R2UCLM","R3UCLM")
Metrics=c("Comprehension","Modification")
Groups=c("A","B","C","D")
Type=c(rep("4G",4))
StudyID="S2"
Control="SC"
ReshapedData= ExtractExperimentData(
  KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14TOSEM,
  ExperimentNames=FullExperimentNames, idvar="ParticipantID", timevar="Period",
  ConvertToWide=TRUE
)
NewTable= ConstructLevel1ExperimentRData(ReshapedData, StudyID, ShortExperimentNames, Groups,
  Metrics,Type,Control
  )
resRe=lme4::lmer(r~(1|Id),data=NewTable)
summary(resRe)
# Linear mixed model fit by REML ['lmerMod']
# Formula: r ~ (1 | Id)
# REML criterion at convergence: 47.8
# Scaled residuals:
#    Min      1Q  Median      3Q     Max
# -1.4382 -0.9691  0.2190  0.8649  1.4761
#
# Random effects:
#  Groups   Name        Variance Std.Dev.
#   Id       (Intercept) 0.03978  0.1994
#   Residual             0.20974  0.4580
#  Number of obs: 32, groups:  Id, 16
#
#  Fixed effects:
#             Estimate Std. Error t value
#  (Intercept)  0.06175    0.09508   0.649
#  N=length(NewTable$r)
 ExtractSummaryStatisticsRandomizedExp(lmeRA=resRe,N=32,alpha=0.05)
#      N    Mean      SE LowerBound UpperBound
#   1 32 0.06175 0.09508    -0.1319     0.2554
# }

Run the code above in your browser using DataLab