#as.data.frame(calculate4GBias(mean=0,sd=1,diff=c(0.266,0.72375,1.43633),
# Expected.StdMD=c(0.2,0.5,0.8),Expected.PHat=c(0.575,0.696,0.845),N=10,reps=200,type="l",
# seed=17+1823,StdAdj=0,Blockmean=0))
# Design BEIncluded GrpSize Diff NPBias StdMDBias NPMdMRE StdMDMdMRE ObsPHat ObsCliffd.
# 1 4G_l No 10 Small -0.05933333 0.1247408 0.8666667 1.2047848 0.570550 0.1411..
# 2 4G_l No 10 Medium -0.01760204 0.1565643 0.3112245 0.4426859 0.692550 0.3851..
# 3 4G_l No 10 Large -0.00326087 0.2273638 0.1594203 0.2924361 0.843875 0.6877..
as.data.frame(calculate4GBias(mean=1,sd=3,diff=c(0.1225,0.3415,0.6224),
Expected.StdMD=c(-0.208,-0.52,-0.833),Expected.PHat=c(0.444,0.360,0.277),N=20,reps=30,type="g",
seed=17+977,StdAdj=0 ,Blockmean=0.5))
# Results for reps=200:
# Design BEIncluded GrpSize Diff NPBias StdMDBias NPMdMRE StdMDMdMRE ObsPHat ObsCli..
#1 4G_g Yes 20 Small 0.04274554 0.02242895 0.8370536 0.7960052 0.4416062 -0.1167..
#2 4G_g Yes 20 Medium 0.01959821 0.01585829 0.3348214 0.3210435 0.3572562 -0.2854..
#3 4G_g Yes 20 Large 0.01303251 0.01515967 0.1905830 0.1871956 0.2740938 -0.4518..
Run the code above in your browser using DataLab