# as.data.frame(calculateMABias(mean=0,sd=1,N=10,diff=c(0.2,0.5,0.8), Experiments=5,reps=10,
# Expected.StdMD=c(0.2,0.5,0.8), Expected.PHat=c(0.556,0.638,0.714), type="n",FourG=FALSE,
# seed= 123, StdAdj = 0, Blockmean=0, StdExp=0))
# Design Blockmean GrpSize Diff NPBias StdMDBias NPMdMRE StdMDMdMRE ObsPHat ObsCliffd..
#1 2G_n No 10 Small 0.09285714 0.02606704 0.8928571 1.0741432 0.5612 0.1224..
#2 2G_n No 10 Medium 0.03768116 0.01740262 0.2391304 0.4171896 0.6432 0.2864..
#3 2G_n No 10 Large 0.03738318 0.01523651 0.2009346 0.2490287 0.7220 0.4440..
# PHatPower CliffdPower StdESPower
#1 0.2 0.2 0.3
#2 0.7 0.7 0.7
#3 1.0 1.0 1.0
as.data.frame(calculateMABias(mean=0,sd=1,N=10,diff=c(0.2,0.5,0.8), Experiments=5,reps=4,
Expected.StdMD=c(0.2,0.5,0.8), Expected.PHat=c(0.556,0.638,0.714), type="n",FourG=TRUE,
seed= 123,StdAdj = 0.5,Blockmean=0.5,StdExp=0))
#Results for reps=10
# Design Blockmean GrpSize Diff NPBias StdMDBias NPMdMRE StdMDMdMRE ObsPHat ObsClif..
#1 4G_n_het Yes 10 Small -0.1321429 -0.1372277 0.6696429 0.4698935 0.5486 0.0972..
#2 4G_n_het Yes 10 Medium -0.1869565 -0.1882479 0.2318841 0.1472392 0.6122 0.2244..
#3 4G_n_het Yes 10 Large -0.1864486 -0.2010029 0.1612150 0.1531253 0.6741 0.3482..
# PHatPower CliffdPower StdESPower
#1 0.4 0.4 0.4
#2 0.9 0.9 0.8
#3 1.0 1.0 1.0
Run the code above in your browser using DataLab