Cliffd=c(0.84,0.2,-0.04,0.44,0.76)
CliffdvarInvalid=c(0.04,0.18,0.21,0.15)
Cliffdvar=c(0.04,0.18,0.21,0.15,0.06)
CliffdvarInvalid=c(0.04,0.18,0.21,0.15)
df=45
as.data.frame(metaanalyse.Cliffd(Cliffd=Cliffd,Cliffdvar=Cliffdvar,df=df,alternative="greater",
alpha=0.05))
# Estimate UpperCI LowerCI Variance tvalue df AltHyp NullHyp pvalue
#1 0.44 0.6601381 0.1502568 0.0256 2.75 45 >0 <=0 0.004275955
# RejectNullHyp Q I.square ProbQHomogeneous
#1 Yes 21.5 81.39535 0.0002519835
as.data.frame(metaanalyse.Cliffd(Cliffd=Cliffd,Cliffdvar=Cliffdvar,df=df,alternative="less",
alpha=0.05))
# Estimate UpperCI LowerCI Variance tvalue df AltHyp NullHyp pvalue RejectNullHyp
#1 0.44 0.6601381 0.1502568 0.0256 2.75 45 <0 >=0 0.995724 No
# Q I.square ProbQHomogeneous
#1 21.5 81.39535 0.0002519835
as.data.frame(metaanalyse.Cliffd(Cliffd=Cliffd,Cliffdvar=Cliffdvar,df=df,alternative="two.sided",
alpha=0.05))
# Estimate UpperCI LowerCI Variance tvalue df AltHyp NullHyp pvalue
#1 0.44 0.692073 0.09227496 0.0256 2.75 45 Not=0 ~0 0.008551911
# RejectNullHyp Q I.square ProbQHomogeneous
#1 Yes 21.5 81.39535 0.0002519835
as.data.frame(metaanalyse.Cliffd(Cliffd=Cliffd,Cliffdvar=Cliffdvar,df=df,alpha=0.05))
# Estimate UpperCI LowerCI Variance tvalue df AltHyp NullHyp pvalue
#1 0.44 0.692073 0.09227496 0.0256 2.75 45 Not=0 ~0 0.008551911
# RejectNullHyp Q I.square ProbQHomogeneous
#1 Yes 21.5 81.39535 0.0002519835
metaanalyse.Cliffd(Cliffd=Cliffd,Cliffdvar=Cliffdvar,df=0,alternative="two.sided",alpha=0.05)
#Error in testfunctionParameterChecks(alternative = alternative, alpha = alpha, :
# Invalid alternative parameter, choose one of two.sided, greater or less
# metaanalyse.Cliffd(Cliffd=Cliffd,Cliffdvar=CliffdvarInvalid,df=df,alternative="greater",
# alpha=0.05)
#Error in metaanalyse.Cliffd(Cliffd = Cliffd, Cliffdvar = CliffdvarInvalid, :
# Length of Cliffdvar parameter must equal the length of the Cliffd parameter
Run the code above in your browser using DataLab