Function to create some node
createNode(
nodeType = c("Ridge"),
units = NULL,
lr = 1,
sr = NULL,
otputDim = NULL,
inputDim = NULL,
name = NULL,
ridge = 0,
inputBias = TRUE,
input_scaling = TRUE,
input_connectivity = 0.1,
rc_connectivity = 0.1,
activation = "tanh",
dtype = "float64",
seed = NULL,
...
)A node generated by reservoirpy python module.
Type of node. Default is "Ridge".
(int) optional
Number of reservoir units. If None, the number of units will be infered from
the W matrix shape.
(float) default to 1.0
Neurons leak rate. Must be in :math:[0, 1].
(float) optional Spectral radius of recurrent weight matrix.
Output dimension of the Node. Dimension of its state.
Input dimension of the Node.
Name of the Node. It must be a unique identifier.
float, default to 0.0. L2 regularization parameter.
bool, default to TRUE. If TRUE, then a bias parameter
will be learned along with output weights.
float or array-like of shapes (features), default to 1.0.
Input gain. An array of the same dimension as the inputs can be used to
set up different input scaling for each feature.
float, default to 0.1. Connectivity of input neurons, i.e. ratio of input neurons connected to reservoir neurons. Must be between 0 and 1.
float, default to 0.1. Connectivity of recurrent weight matrix, i.e. ratio of reservoir neurons connected to other reservoir neurons, including themselves. Must be between 0 and 1.
str 'tanh'. Reservoir units activation function. Should be a activationsfunc function name ('tanh', 'identity', 'sigmoid', 'relu', 'softmax', 'softplus').
Numerical type for node parameters
set random seed
Others params
if(interactive()){
readout <- reservoirnet::createNode("Ridge")
}
Run the code above in your browser using DataLab