x <- rexp(100)
lambda_hat <- 1 / mean(x)
lambda_hat2 <- fit_dist(dist_exponential(), x)$params$rate
identical(lambda_hat, lambda_hat2)
dist <- dist_mixture(list(dist_normal(), dist_translate(dist_exponential(), offset = 6)))
params <- list(
dists = list(list(mean = 5, sd = 1), list(dist = list(rate = 1))), probs = list(0.95, 0.05)
)
set.seed(2000)
u <- runif(100, 10, 20)
x <- dist$sample(100, with_params = params)
obs <- trunc_obs(x = x[x <= u], tmin = -Inf, tmax = u[x <= u])
default_fit <- fit_dist(dist, obs)
direct_fit <- fit_dist_direct(dist, obs)
# NB: direct optimisation steps with pre-run take a few seconds
# \donttest{
direct_fit_init <- fit_dist_direct(dist, obs, start = default_fit$params)
direct_fit_auto_init <- fit_dist_direct(dist, obs, .start_with_default = TRUE)
stopifnot(direct_fit_init$logLik == direct_fit_auto_init$logLik)
c(default_fit$logLik, direct_fit$logLik, direct_fit_init$logLik)
# }
Run the code above in your browser using DataLab