Learn R Programming

rfUtilities (version 1.0-2)

rf.class.sensitivity: Random Forests class-level sensitivity analysis

Description

Performs a sensitivity analysis on a specified class in a random forests model

Usage

rf.class.sensitivity(x, xdata, d = "1", p = 0.05, nperm = 999,
  plot = TRUE, seed = NULL, ...)

Arguments

x
randomForest class object
xdata
Independent variables used in model
d
Which class to perturb
p
Proportion of class to be randomized
nperm
Number of permutations
plot
Plot results (TRUE/FALSE)
seed
Random seed value
...
Additional arguments passed to randomForest

Value

  • List object with following components: mean.error Mean of RMSE sd.error Standard deviation of RMSE rmse Root mean squared error (RMSE) for each perturbed probability probs data.frame with "true" estimate in first column and perturbed probabilities in subsequent columns.

References

Evans J.S., M.A. Murphy, Z.A. Holden, S.A. Cushman (2011). Modeling species distribution and change using Random Forests CH.8 in Predictive Modeling in Landscape Ecology eds Drew, CA, Huettmann F, Wiersma Y. Springer Gardner, R.H., R.V. O'Neill, M.G. Turner, and V.H. Dale (1989). Quantifying scale-dependent effects of animal movements with simple percolation models. Landscape Ecology 3:217-227.

Examples

Run this code
data(iris)
  y <- as.factor(ifelse(iris$Species == "setosa" |
                 iris$Species == "virginica", 1, 0) )
    xdata <- iris[,1:4]

rf.mdl <- randomForest(xdata, y, ntree=501)
  ua <- rf.class.sensitivity(rf.mdl, xdata=xdata, nperm=20, ntree=501, plot=TRUE)

Run the code above in your browser using DataLab