Learn R Programming

⚠️There's a newer version (3.8.2) of this package.Take me there.

rgbif

rgbif gives you access to data from GBIF via their REST API. GBIF versions their API - we are currently using v1 of their API. You can no longer use their old API in this package - see ?rgbif-defunct.

Tutorials:

Package API

The rgbif package API follows the GBIF API, which has the following sections:

contributing organizations, installations, networks, and nodes * rgbif functions: dataset_metrics(), dataset_search(), dataset_suggest(), datasets(), enumeration(), enumeration_country(), installations(), networks(), nodes(), organizations() * Registry also includes the GBIF OAI-PMH service, which includes GBIF registry data only. rgbif functions: gbif_oai_get_records(), gbif_oai_identify(), gbif_oai_list_identifiers(), gbif_oai_list_metadataformats(), gbif_oai_list_records(), gbif_oai_list_sets()

the search and download APIs * rgbif functions: occ_count(), occ_data(), occ_download(), occ_download_cancel(), occ_download_cancel_staged(), occ_download_get(), occ_download_import(), occ_download_list(), occ_download_meta(), occ_get(), occ_issues(), occ_issues_lookup(), occ_metadata(), occ_search()

The GBIF maps API (http://www.gbif.org/developer/maps) is not implemented in rgbif, and are meant more for intergration with web based maps.

Installation

install.packages("rgbif")

Alternatively, install development version

install.packages("devtools")
devtools::install_github("ropensci/rgbif")
library("rgbif")

Note: Windows users have to first install Rtools to use devtools

Search for occurrence data

occ_search(scientificName = "Ursus americanus", limit = 50)
#> Records found [7919] 
#> Records returned [50] 
#> No. unique hierarchies [1] 
#> No. media records [47] 
#> Args [scientificName=Ursus americanus, limit=50, offset=0, fields=all] 
#> Source: local data frame [50 x 67]
#> 
#>                name        key decimalLatitude decimalLongitude
#>               <chr>      <int>           <dbl>            <dbl>
#> 1  Ursus americanus 1253300445        44.65481        -72.67270
#> 2  Ursus americanus 1229610216        44.06086        -71.92712
#> 3  Ursus americanus 1249277297        35.76789        -75.80894
#> 4  Ursus americanus 1229610234        44.06062        -71.92692
#> 5  Ursus americanus 1249296297        39.08590       -105.24586
#> 6  Ursus americanus 1272078411        44.41793        -72.70709
#> 7  Ursus americanus 1253314877        49.25782       -122.82786
#> 8  Ursus americanus 1249284297        43.68723        -72.32891
#> 9  Ursus americanus 1257415362        44.32746        -72.41007
#> 10 Ursus americanus 1262389246        43.80871        -72.20964
#> ..              ...        ...             ...              ...
#> Variables not shown: issues <chr>, datasetKey <chr>, publishingOrgKey
#>   <chr>, publishingCountry <chr>, protocol <chr>, lastCrawled <chr>,
#>   lastParsed <chr>, extensions <chr>, basisOfRecord <chr>, taxonKey <int>,
#>   kingdomKey <int>, phylumKey <int>, classKey <int>, orderKey <int>,
#>   familyKey <int>, genusKey <int>, speciesKey <int>, scientificName <chr>,
#>   kingdom <chr>, phylum <chr>, order <chr>, family <chr>, genus <chr>,
#>   species <chr>, genericName <chr>, specificEpithet <chr>, taxonRank
#>   <chr>, dateIdentified <chr>, year <int>, month <int>, day <int>,
#>   eventDate <chr>, modified <chr>, lastInterpreted <chr>, references
#>   <chr>, identifiers <chr>, facts <chr>, relations <chr>, geodeticDatum
#>   <chr>, class <chr>, countryCode <chr>, country <chr>, rightsHolder
#>   <chr>, identifier <chr>, verbatimEventDate <chr>, datasetName <chr>,
#>   gbifID <chr>, verbatimLocality <chr>, collectionCode <chr>, occurrenceID
#>   <chr>, taxonID <chr>, license <chr>, catalogNumber <chr>, recordedBy
#>   <chr>, http...unknown.org.occurrenceDetails <chr>, institutionCode
#>   <chr>, rights <chr>, eventTime <chr>, occurrenceRemarks <chr>,
#>   identificationID <chr>, infraspecificEpithet <chr>,
#>   coordinateUncertaintyInMeters <dbl>, informationWithheld <chr>.

Or you can get the taxon key first with name_backbone(). Here, we select to only return the occurrence data.

key <- name_backbone(name='Helianthus annuus', kingdom='plants')$speciesKey
occ_search(taxonKey=key, limit=20)
#> Records found [31357] 
#> Records returned [20] 
#> No. unique hierarchies [1] 
#> No. media records [13] 
#> Args [taxonKey=3119195, limit=20, offset=0, fields=all] 
#> Source: local data frame [20 x 81]
#> 
#>                 name        key decimalLatitude decimalLongitude
#>                <chr>      <int>           <dbl>            <dbl>
#> 1  Helianthus annuus 1249279611        34.04810       -117.79884
#> 2  Helianthus annuus 1248872560        37.81227         -8.82959
#> 3  Helianthus annuus 1248887127        38.53339         -8.94263
#> 4  Helianthus annuus 1248873088        38.53339         -8.94263
#> 5  Helianthus annuus 1253308332        29.67463        -95.44804
#> 6  Helianthus annuus 1249286909        32.58747        -97.10081
#> 7  Helianthus annuus 1265544678        32.58747        -97.10081
#> 8  Helianthus annuus 1262385911        32.78328        -96.70352
#> 9  Helianthus annuus 1262375813        29.82586        -95.45604
#> 10 Helianthus annuus 1262379231        34.04911       -117.80066
#> 11 Helianthus annuus 1270045172        33.92958       -117.37322
#> 12 Helianthus annuus 1269541227              NA               NA
#> 13 Helianthus annuus 1265590198        25.76265       -100.25513
#> 14 Helianthus annuus 1265560496        34.12861       -118.20700
#> 15 Helianthus annuus 1265590525        29.86693        -95.64667
#> 16 Helianthus annuus 1272087563        28.51021        -96.81979
#> 17 Helianthus annuus 1265895094        42.87784       -112.43226
#> 18 Helianthus annuus 1265553900        34.12932       -118.20648
#> 19 Helianthus annuus 1269543851        29.50991        -94.50006
#> 20 Helianthus annuus 1265899487        19.45194        -96.95945
#> Variables not shown: issues <chr>, datasetKey <chr>, publishingOrgKey
#>   <chr>, publishingCountry <chr>, protocol <chr>, lastCrawled <chr>,
#>   lastParsed <chr>, extensions <chr>, basisOfRecord <chr>, taxonKey <int>,
#>   kingdomKey <int>, phylumKey <int>, classKey <int>, orderKey <int>,
#>   familyKey <int>, genusKey <int>, speciesKey <int>, scientificName <chr>,
#>   kingdom <chr>, phylum <chr>, order <chr>, family <chr>, genus <chr>,
#>   species <chr>, genericName <chr>, specificEpithet <chr>, taxonRank
#>   <chr>, dateIdentified <chr>, year <int>, month <int>, day <int>,
#>   eventDate <chr>, modified <chr>, lastInterpreted <chr>, references
#>   <chr>, identifiers <chr>, facts <chr>, relations <chr>, geodeticDatum
#>   <chr>, class <chr>, countryCode <chr>, country <chr>, rightsHolder
#>   <chr>, identifier <chr>, verbatimEventDate <chr>, datasetName <chr>,
#>   gbifID <chr>, verbatimLocality <chr>, collectionCode <chr>, occurrenceID
#>   <chr>, taxonID <chr>, license <chr>, catalogNumber <chr>, recordedBy
#>   <chr>, http...unknown.org.occurrenceDetails <chr>, institutionCode
#>   <chr>, rights <chr>, eventTime <chr>, identificationID <chr>,
#>   infraspecificEpithet <chr>, institutionID <chr>, nomenclaturalCode
#>   <chr>, dataGeneralizations <chr>, footprintWKT <chr>, county <chr>,
#>   municipality <chr>, language <chr>, occurrenceStatus <chr>, footprintSRS
#>   <chr>, ownerInstitutionCode <chr>, higherClassification <chr>,
#>   reproductiveCondition <chr>, identifiedBy <chr>, collectionID <chr>,
#>   occurrenceRemarks <chr>, coordinateUncertaintyInMeters <dbl>,
#>   informationWithheld <chr>.

Search for many species

Get the keys first with name_backbone(), then pass to occ_search()

splist <- c('Accipiter erythronemius', 'Junco hyemalis', 'Aix sponsa')
keys <- sapply(splist, function(x) name_backbone(name=x)$speciesKey, USE.NAMES=FALSE)
occ_search(taxonKey=keys, limit=5, hasCoordinate=TRUE)
#> Occ. found [2480598 (21), 2492010 (2454564), 2498387 (772915)] 
#> Occ. returned [2480598 (5), 2492010 (5), 2498387 (5)] 
#> No. unique hierarchies [2480598 (1), 2492010 (1), 2498387 (1)] 
#> No. media records [2480598 (1), 2492010 (5), 2498387 (5)] 
#> Args [taxonKey=2480598,2492010,2498387, hasCoordinate=TRUE, limit=5,
#>      offset=0, fields=all] 
#> First 10 rows of data from 2480598
#> 
#> Source: local data frame [5 x 76]
#> 
#>                      name        key decimalLatitude decimalLongitude
#>                     <chr>      <int>           <dbl>            <dbl>
#> 1 Accipiter erythronemius  920169861       -20.55244        -56.64104
#> 2 Accipiter erythronemius  920184036       -20.76029        -56.71314
#> 3 Accipiter erythronemius 1001096527       -27.58000        -58.66000
#> 4 Accipiter erythronemius 1001096518       -27.92000        -59.14000
#> 5 Accipiter erythronemius  699417490         5.26667        -60.73333
#> Variables not shown: issues <chr>, datasetKey <chr>, publishingOrgKey
#>   <chr>, publishingCountry <chr>, protocol <chr>, lastCrawled <chr>,
#>   lastParsed <chr>, extensions <chr>, basisOfRecord <chr>, taxonKey <int>,
#>   kingdomKey <int>, phylumKey <int>, classKey <int>, orderKey <int>,
#>   familyKey <int>, genusKey <int>, speciesKey <int>, scientificName <chr>,
#>   kingdom <chr>, phylum <chr>, order <chr>, family <chr>, genus <chr>,
#>   species <chr>, genericName <chr>, specificEpithet <chr>, taxonRank
#>   <chr>, coordinateUncertaintyInMeters <dbl>, year <int>, month <int>, day
#>   <int>, eventDate <chr>, lastInterpreted <chr>, identifiers <chr>, facts
#>   <chr>, relations <chr>, geodeticDatum <chr>, class <chr>, countryCode
#>   <chr>, country <chr>, catalogNumber <chr>, recordedBy <chr>,
#>   institutionCode <chr>, locality <chr>, gbifID <chr>, collectionCode
#>   <chr>, modified <chr>, identifier <chr>, created <chr>,
#>   associatedSequences <chr>, occurrenceID <chr>, higherClassification
#>   <chr>, taxonID <chr>, sex <chr>, elevation <dbl>, elevationAccuracy
#>   <dbl>, institutionID <chr>, language <chr>, type <chr>, preparations
#>   <chr>, rights <chr>, verbatimElevation <chr>, recordNumber <chr>,
#>   higherGeography <chr>, verbatimEventDate <chr>,
#>   georeferenceVerificationStatus <chr>, datasetName <chr>,
#>   otherCatalogNumbers <chr>, occurrenceRemarks <chr>, accessRights <chr>,
#>   bibliographicCitation <chr>, georeferenceSources <chr>.

Maps

Make a simple map of species occurrences.

splist <- c('Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa')
keys <- sapply(splist, function(x) name_backbone(name=x)$speciesKey, USE.NAMES=FALSE)
dat <- occ_search(taxonKey=keys, limit=100, return='data', hasCoordinate=TRUE)
library('plyr')
datdf <- ldply(dat)
gbifmap(datdf)

Meta

  • Please report any issues or bugs.
  • License: MIT
  • Get citation information for rgbif in R doing citation(package = 'rgbif')
  • Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

This package is part of a richer suite called SPOCC Species Occurrence Data, along with several other packages, that provide access to occurrence records from multiple databases.


Copy Link

Version

Install

install.packages('rgbif')

Monthly Downloads

7,612

Version

0.9.4

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Scott Chamberlain

Last Published

June 29th, 2016

Functions in rgbif (0.9.4)

dataset_search

Search datasets in GBIF.
dataset_suggest

Suggest datasets in GBIF.
blanktheme

Custom ggplot2 theme
count_facet

Facetted count occurrence search.
check_wkt

Check input WKT
create_gist

Function that takes a list of files and creates payload for API
density_spplist

The density web service provides access to records showing the density of occurrence records from the GBIF Network by one-degree cell.
gbif_photos

View photos from GBIF.
enumeration

Enumerations.
gbif_issues

Table of GBIF issues, with codes used in data output, full issue name, and descriptions.
dataset_metrics

Get details on a GBIF dataset.
datasets

Search for datasets and dataset metadata.
elevation

Get elevation for lat/long points from a data.frame or list of points.
gbif_citation

Get citation for datasets used
densitylist

The density web service provides access to records showing the density of occurrence records from the GBIF Network by one-degree cell.
name_lookup

Lookup names in all taxonomies in GBIF.
get_credentials

Get Github credentials from use in console
gbifmap_list

Make a simple map to visualize GBIF point data.
gbifmap

Make a map to visualize GBIF occurrence data.
name_backbone

Lookup names in the GBIF backbone taxonomy.
gbif_bbox2wkt

Convert a bounding box to a Well Known Text polygon, and a WKT to a bounding box
gbifdata

Get data.frame from occurrencelist, occurrencelist_many, or densitylist.
gbif_oai

GBIF registry data via OAI-PMH
occ_download_import

Import a downloaded file from GBIF.
occ_download_get

Get a download from GBIF.
occ_download_list

Lists the downloads created by a user.
nodes

Nodes metadata.
networks

Networks metadata.
name_usage

Lookup details for specific names in all taxonomies in GBIF.
installations

Installations metadata.
gbif_names

View highlighted terms in name results from GBIF.
gbifmap_dens

Make a simple map to visualize GBIF data density data
downloads

Downloads interface
gist

Post a file as a Github gist
isocodes

Table of country two character ISO codes, and GBIF names
name_suggest

A quick and simple autocomplete service that returns up to 20 name usages by doing prefix matching against the scientific name. Results are ordered by relevance.
occ_get

Get data for specific GBIF occurrences.
occ_issues

Parse and examine further GBIF issues on a dataset.
occ_download

Spin up a download request for GBIF occurrence data.
occ_issues_lookup

Lookup occurrence issue definitions and short codes
occurrenceget

Get individual records for a given occurrence record.
occurrencedensity

Returns summary counts of occurrence records by one-degree cell for a single taxon, country, dataset, data publisher or data network.
occ_search

Search for GBIF occurrences
occ_metadata

Search for catalog numbers, collection codes, collector names, and institution codes.
occ_count

Get number of occurrence records.
occ_download_cancel

Cancel a download cretion process.
occ_download_meta

Retrieves the occurrence download metadata by its unique key.
rgbif-package

Interface to the Global Biodiversity Information Facility API.
togeojson

Convert spatial data files to GeoJSON from various formats.
occ_fields

Vector of fields in the output for the function occ_search
taxonsearch

Search for taxa in GBIF.
stylegeojson

Style a data.frame prior to converting to geojson.
occurrencecount

Counts taxon concept records matching a range of filters.
occ_data

Search for GBIF occurrences - simplified for speed
parsenames

Parse taxon names using the GBIF name parser.
occurrencelist_many

occurrencelist_many is the same as occurrencelist, but takes in a vector of species names.
organizations

Organizations metadata.
rgbif-defunct

Defunct functions in rgbif
read_wkt

Check input WKT
wkt_parse

parse wkt into smaller bits
typestatus

Type status options for GBIF searching
occurrencelist_all

Occurrencelist_all carries out an occurrencelist query for a single name and all its name variants according to GBIF's name matching.
occurrencelist

Occurrencelist searches for taxon concept records matching a range of filters.
resources

Get data resources and their unique keys.
rgb_country_codes

Look up 2 character ISO country codes
%>%

Pipe operator
providers

Get data providers and their unique keys.
taxrank

Get the possible values to be used for (taxonomic) rank arguments in GBIF API methods.
taxoncount

Search by taxon to retrieve number of records in GBIF.
type_sum

Type summary
taxonget

Get taxonomic information on a specific taxon or taxa in GBIF by their taxon concept keys.
suggestfields

Fields available in gbif_suggest function