## Not run:
# ## what do issues mean, can print whole table, or search for matches
# head(gbif_issues())
# gbif_issues()[ gbif_issues()$code %in% c('cdround','cudc','gass84','txmathi'), ]
#
# # compare out data to after occ_issues use
# (out <- occ_search(limit=100))
# out %>% occ_issues(cudc)
#
# # Parsing output by issue
# (res <- occ_search(geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit = 50))
#
# ## or parse issues in various ways
# ### inlude only rows with gass84 issue
# gg <- res %>% occ_issues(gass84)
# NROW(res$data)
# NROW(gg$data)
# head(res$data)[,c(1:5)]
# head(gg$data)[,c(1:5)]
#
# ### remove data rows with certain issue classes
# res %>% occ_issues(-cdround, -cudc)
#
# ### split issues into separate columns
# res %>% occ_issues(mutate = "split")
# res %>% occ_issues(-cudc, -mdatunl, mutate = "split")
# res %>% occ_issues(gass84, mutate = "split")
#
# ### expand issues to more descriptive names
# res %>% occ_issues(mutate = "expand")
#
# ### split and expand
# res %>% occ_issues(mutate = "split_expand")
#
# ### split, expand, and remove an issue class
# res %>% occ_issues(-cudc, mutate = "split_expand")
#
# ## Or you can use occ_issues without %>%
# occ_issues(res, -cudc, mutate = "split_expand")
# ## End(Not run)
Run the code above in your browser using DataLab