# NOT RUN {
library(riAFTBART)
lp_w_all <-
c(".4*x1 + .1*x2 - .1*x4 + .1*x5", #' w = 1
".2 * x1 + .2 * x2 - .2 * x4 - .3 * x5") #' w = 2
nlp_w_all <-
c("-.5*x1*x4 - .1*x2*x5", #' w = 1
"-.3*x1*x4 + .2*x2*x5")#' w = 2
lp_y_all <- rep(".2*x1 + .3*x2 - .1*x3 - .1*x4 - .2*x5", 3)
nlp_y_all <- rep(".7*x1*x1 - .1*x2*x3", 3)
X_all <- c(
"rnorm(10, 0, 0.5)",#' x1
"rbeta(10, 2, .4)", #' x2
"runif(10, 0, 0.5)",#' x3
"rweibull(10,1,2)", #' x4
"rbinom(10, 1, .4)"#' x5
)
set.seed(111111)
data <- dat_sim(
nK = 2,
K = 5,
n_trt = 3,
X = X_all,
eta = 2,
lp_y = lp_y_all,
nlp_y = nlp_y_all,
align = FALSE,
lp_w = lp_w_all,
nlp_w = nlp_w_all,
lambda = c(1000,2000,3000),
delta = c(0.5,0.5),
psi = 1,
sigma_w = 1,
sigma_y = 2,
censor_rate = 0.1
)
data$LP_true[,1]
data$lambda
data$eta
res <- riAFTBART_fit(M.burnin = 10, M.keep = 10, M.thin = 1, status = data$delta,
y.train = data$Tobs, trt.train = data$w, trt.test = 1,
x.train = data$covariates,
x.test = data$covariates,
cluster.id = data$cluster)
res_cal_surv_prob <- cal_surv_prob(object = res,
time.points = 1:max(data$Tobs),
test.only = TRUE,
cluster.id = data$cluster)
res_cal_PEHE_survival <- cal_PEHE(object = res_cal_surv_prob,
metric = "survival", time = 40,
LP = data$LP_true[,1], lambda = data$lambda[1],
eta = data$eta)
res_cal_PEHE_rmst <- cal_PEHE(object = res_cal_surv_prob,
metric = "rmst",
time = 40,
LP = data$LP_true[,1],
lambda = data$lambda[1],
eta = data$eta)
# }
Run the code above in your browser using DataLab