Learn R Programming

riskRegression (version 0.0.8)

plot.riskRegression: Plotting predicted risk

Description

Show predicted risk obtained by a risk prediction model as a function of time.

Usage

## S3 method for class 'riskRegression':
plot(x, cause,newdata, xlab, ylab, xlim, ylim, lwd, col,
lty, axes = TRUE, percent = TRUE, legend=TRUE, add = FALSE, ...)
## S3 method for class 'predictedRisk':
plot(x, cause,newdata, xlab, ylab, xlim, ylim, lwd, col, lty, axes = TRUE, percent = TRUE, legend=TRUE, add = FALSE, ...)
## S3 method for class 'CauseSpecificCox':
plot(x, cause,newdata, xlab, ylab, xlim, ylim, lwd,
col, lty, axes = TRUE, percent = TRUE, legend=TRUE, add = FALSE, ...)

Arguments

x
Fitted object obtained with one of ARR, LRR, riskRegression.
cause
For CauseSpecificCox models the cause of interest.
newdata
A data frame containing predictor variable combinations for which to compute predicted risk.
xlim
See plot
ylim
See plot
xlab
See plot
ylab
See plot
lwd
A vector of line thicknesses for the regression coefficients.
col
A vector of colors for the regression coefficients.
lty
A vector of line types for the regression coefficients.
axes
Logical. If FALSE then do not draw axes.
percent
If true the y-axis is labeled in percent.
legend
If true draw a legend.
add
Logical. If TRUE then add lines to an existing plot.
...
Used for transclusion of smart arguments for plot, lines, axis and background. See function SmartControl from prodlim.

Examples

Run this code
library(pec)
data(Melanoma)

fit.arr <- ARR(Hist(time,status)~invasion+age+strata(sex),data=Melanoma,cause=1)
plot(fit.arr)

fit.csc <- CSC(Hist(time,status)~invasion+age+sex,data=Melanoma,cause=1)
plot(fit.csc)

Run the code above in your browser using DataLab