data(cachar_sample)
head(cachar_sample)
# Basic descriptive statistics
table(cachar_sample$areca_nut, cachar_sample$abnormal_screen)
# Regional tobacco use patterns
with(cachar_sample, table(areca_nut, tobacco_chewing))
# Simple risk difference for areca nut and abnormal screening
rd_areca <- calc_risk_diff(
data = cachar_sample,
outcome = "abnormal_screen",
exposure = "areca_nut"
)
print(rd_areca)
# Age-adjusted analysis
rd_adjusted <- calc_risk_diff(
data = cachar_sample,
outcome = "abnormal_screen",
exposure = "areca_nut",
adjust_vars = "age"
)
print(rd_adjusted)
# Stratified by sex
rd_stratified <- calc_risk_diff(
data = cachar_sample,
outcome = "head_neck_abnormal",
exposure = "smoking",
strata = "sex"
)
print(rd_stratified)
# Multiple tobacco exposures comparison
rd_smoking <- calc_risk_diff(cachar_sample, "abnormal_screen", "smoking")
rd_chewing <- calc_risk_diff(cachar_sample, "abnormal_screen", "tobacco_chewing")
rd_areca <- calc_risk_diff(cachar_sample, "abnormal_screen", "areca_nut")
# Compare risk differences
cat("Risk differences for abnormal screening:\n")
cat("Smoking:", sprintf("%.1f%%", rd_smoking$rd * 100), "\n")
cat("Tobacco chewing:", sprintf("%.1f%%", rd_chewing$rd * 100), "\n")
cat("Areca nut:", sprintf("%.1f%%", rd_areca$rd * 100), "\n")
# Create summary table
cat(create_simple_table(rd_areca, "Abnormal Screening Risk by Areca Nut Use"))
Run the code above in your browser using DataLab