# NOT RUN {
generate.logistic.data <- function(beta, n.obs, Sig) {
p <- length(beta)
dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
vals <- dataX %*% as.vector(beta)
generateY <- function(p) { rbinom(1, 1, p)}
dataY <- sapply(1/(1 + exp(-vals)), generateY)
return(list(dataX = dataX, dataY = dataY))
}
n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p
zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10,theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)
# }
# NOT RUN {
a <- models_visited(zigzag_fit$theta)
# Work out probability of top 10 most visited models and all marginal inclusion probabilities
# specific model probabilities become trivially small for large dimensions
b <- model_probabilities(zigzag_fit$times, zigzag_fit$thetas,
models = a[1:10,1:p], marginals=1:p)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab