U_ghuv: A dependence structure of 2 random variables.
Description
It is used when random variables do not have finite second moments, and thus, the covariance matrix is not defined.
For \(X= \int_{\R} g_s dL_s\) and \(Y= \int_{\R} h_s dL_s\) with \(\| g \|_{\alpha}, \| h\|_{\alpha}< \infty\). Then the measure of dependence is given by \(U_{g,h}: \R^2 \to \R\) via
$$U_{g,h} (u,v)=\exp(- \sigma^{\alpha}{\| ug +vh \|_{\alpha}}^{\alpha} ) - \exp(- \sigma^{\alpha} ({\| ug \|_{\alpha}}^{\alpha} + {\| vh \|_{\alpha}}^{\alpha}))$$
Usage
U_ghuv(alpha, sigma, g, h, u, v, ...)
Arguments
alpha
self-similarity parameter of alpha stable random motion.
sigma
Scale parameter of lfsm
g, h
functions \(g,h: \R \to \R\) with finite alpha-norm (see Norm_alpha).