NoiseKriging
model object.This method draws paths of the stochastic process at new input points conditional on the values at the input points used in the fit.
# S3 method for NoiseKriging
simulate(
object,
nsim = 1,
seed = 123,
x,
with_noise = NULL,
will_update = FALSE,
...
)
a matrix with nrow(x)
rows and nsim
columns containing the simulated paths at the inputs points
given in x
.
S3 NoiseKriging object.
Number of simulations to perform.
Random seed used.
Points in model input space where to simulate.
Set to array of values if wish to add the noise in the simulation.
Set to TRUE if wish to use update_simulate(...) later.
Ignored.
Yann Richet yann.richet@irsn.fr
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")
k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
Run the code above in your browser using DataLab