NoiseKriging
model object.This method draws paths of the stochastic process conditional on the values at the input points used in the fit, plus the new input points and their values given as argument (knonw as 'update' points).
# S3 method for NoiseKriging
update_simulate(object, y_u, noise_u, X_u, ...)
a matrix with nrow(x)
rows and nsim
columns containing the simulated paths at the inputs points
given in x
.
S3 NoiseKriging object.
Numeric vector of new responses (output).
Numeric vector of new noise variances (output).
Numeric matrix of new input points.
Ignored.
Yann Richet yann.richet@irsn.fr
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")
k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x, will_update = TRUE)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
X_u <- as.matrix(runif(3))
y_u <- f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")
su <- k$update_simulate(y_u, rep(0.1^2,3), X_u)
lines(x, su[ , 1], col = "blue", lty=2)
lines(x, su[ , 2], col = "blue", lty=2)
lines(x, su[ , 3], col = "blue", lty=2)
Run the code above in your browser using DataLab