Learn R Programming

rlibkriging (version 0.9-1)

update_simulate.NuggetKriging: Update previous simulation of a NuggetKriging model object.

Description

This method draws paths of the stochastic process conditional on the values at the input points used in the fit, plus the new input points and their values given as argument (knonw as 'update' points).

Usage

# S3 method for NuggetKriging
update_simulate(object, y_u, X_u, ...)

Value

a matrix with nrow(x) rows and nsim

columns containing the simulated paths at the inputs points given in x.

Arguments

object

S3 NuggetKriging object.

y_u

Numeric vector of new responses (output).

X_u

Numeric matrix of new input points.

...

Ignored.

Author

Yann Richet yann.richet@irsn.fr

Examples

Run this code
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")

x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x, will_update = TRUE)

lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")

X_u <- as.matrix(runif(3))
y_u <- f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")

su <- k$update_simulate(y_u, X_u)

lines(x, su[ , 1], col = "blue", lty=2)
lines(x, su[ , 2], col = "blue", lty=2)
lines(x, su[ , 3], col = "blue", lty=2)

Run the code above in your browser using DataLab