LIGER provides dataset integration methods based on iNMF (integrative
Non-negative Matrix Factorization [1]) and its variants (online iNMF [2]
and UINMF [3]). This function wraps runINMF,
runOnlineINMF and runUINMF, of which the help
pages have more detailed description.
runIntegration(
  object,
  k = 20,
  lambda = 5,
  method = c("iNMF", "onlineINMF", "UINMF"),
  ...
)# S3 method for liger
runIntegration(
  object,
  k = 20,
  lambda = 5,
  method = c("iNMF", "onlineINMF", "UINMF"),
  seed = 1,
  verbose = getOption("ligerVerbose", TRUE),
  ...
)
# S3 method for Seurat
runIntegration(
  object,
  k = 20,
  lambda = 5,
  method = c("iNMF", "onlineINMF"),
  datasetVar = "orig.ident",
  useLayer = "ligerScaleData",
  assay = NULL,
  seed = 1,
  verbose = getOption("ligerVerbose", TRUE),
  ...
)
Updated input object. For detail, please refer to the refered method linked in Description.
A liger object or a Seurat object with
non-negative scaled data of variable features (Done with
scaleNotCenter).
Inner dimension of factorization (number of factors). Generally, a
higher k will be needed for datasets with more sub-structure. Default
20.
Regularization parameter. Larger values penalize
dataset-specific effects more strongly (i.e. alignment should increase as
lambda increases). Default 5.
iNMF variant algorithm to use for integration. Choose from
"iNMF", "onlineINMF", "UINMF". Default "iNMF".
Arguments passed to other methods and wrapped functions.
Random seed to allow reproducible results. Default 1.
Logical. Whether to show information of the progress. Default
getOption("ligerVerbose") or TRUE if users have not set.
Metadata variable name that stores the dataset source
annotation. Default "orig.ident".
For Seurat>=4.9.9, the name of layer to retrieve input
non-negative scaled data. Default "ligerScaleData". For older Seurat,
always retrieve from scale.data slot.
Name of assay to use. Default NULL uses current active
assay.
Joshua D. Welch and et al., Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity, Cell, 2019
Chao Gao and et al., Iterative single-cell multi-omic integration using online learning, Nat Biotechnol., 2021
April R. Kriebel and Joshua D. Welch, UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization, Nat. Comm., 2022
pbmc <- normalize(pbmc)
pbmc <- selectGenes(pbmc)
pbmc <- scaleNotCenter(pbmc)
if (requireNamespace("RcppPlanc", quietly = TRUE)) {
    pbmc <- runIntegration(pbmc)
}
Run the code above in your browser using DataLab