### Set up java parameter and load rmcfs package
options(java.parameters = "-Xmx4g")
library(rmcfs)
# create input data
adata <- artificial.data(rnd_features = 10)
showme(adata)
# Parametrize and run MCFS-ID procedure
result <- mcfs(class~., adata, cutoffPermutations = 0, featureFreq = 50,
buildID = TRUE, finalCV = FALSE, finalRuleset = FALSE,
threadsNumber = 2)
# build interdependencies graph for top 6 features
# and top 12 interdependencies and plot all nodes
gid <- build.idgraph(result, size = 6, size_ID = 12, plot_all_nodes = TRUE)
plot(gid, label_dist = 1)
# Export graph to graphML (XML structure)
path <- tempdir()
igraph::write.graph(gid, file = file.path(path, "artificial.graphml"),
format = "graphml", prefixAttr = FALSE)
Run the code above in your browser using DataLab