Learn R Programming

rmutil (version 1.1.4)

Generalized Extreme Value: Generalized Extreme Value Distribution

Description

These functions provide information about the generalized extreme value distribution with location parameter equal to m, dispersion equal to s, and family parameter equal to f: density, cumulative distribution, quantiles, log hazard, and random generation.

The generalized extreme value distribution has density $$ f(y) = y^{\nu-1} \exp(y^\nu/\nu) \frac{\sigma}{\mu} \frac{\exp(y^\nu/\nu)}{\mu^{\sigma-1}/(1-I(\nu>0)+sign(\nu) exp(-\mu^-\sigma))}\exp(-(\exp(y^\nu\nu)/\mu)^\sigma)$$

where \(\mu\) is the location parameter of the distribution, \(\sigma\) is the dispersion, \(\nu\) is the family parameter, \(I()\) is the indicator function, and \(y>0\).

\(\nu=1\) a truncated extreme value distribution.

Usage

dgextval(y, s, m, f, log=FALSE)
pgextval(q, s, m, f)
qgextval(p, s, m, f)
rgextval(n, s, m, f)

Arguments

y

vector of responses.

q

vector of quantiles.

p

vector of probabilities

n

number of values to generate

m

vector of location parameters.

s

vector of dispersion parameters.

f

vector of family parameters.

log

if TRUE, log probabilities are supplied.

See Also

dweibull for the Weibull distribution.

Examples

Run this code
# NOT RUN {
dgextval(1, 2, 1, 2)
pgextval(1, 2, 1, 2)
qgextval(0.82, 2, 1, 2)
rgextval(10, 2, 1, 2)
# }

Run the code above in your browser using DataLab