Learn R Programming

⚠️There's a newer version (1.4.0) of this package.Take me there.

rnoaa

rnoaa is an R interface to many NOAA data sources. We don't cover all of them, but we include many commonly used sources, and add we are always adding new sources. We focus on easy to use interfaces for getting NOAA data, and giving back data in easy to use formats downstream. We currently don't do much in the way of plots or analysis.

Data sources in rnoaa

Help

Documentation is at https://docs.ropensci.org/rnoaa/, and there are many vignettes in the package itself, available in your R session, or on CRAN. The tutorials:

  • NOAA Buoy vignette
  • NOAA National Climatic Data Center (NCDC) vignette (examples)
  • NOAA NCDC attributes vignette
  • NOAA NCDC workflow vignette
  • Sea ice vignette
  • Severe Weather Data Inventory (SWDI) vignette
  • Historical Observing Metadata Repository (HOMR) vignette
  • Storms (IBTrACS) vignette
  • Complementing air quality data (ropenaq) with weather data using rnoaa

netcdf data

Some functions use netcdf files, including:

  • gefs
  • ersst
  • buoy
  • bsw
  • argo

You'll need the ncdf4 package for those functions, and those only. ncdf4 is in Suggests in this package, meaning you only need ncdf4 if you are using any of the functions listed above. You'll get an informative error telling you to install ncdf4 if you don't have it and you try to use the those functions. Installation of ncdf4 should be straightforward on any system. See https://cran.r-project.org/package=ncdf4

NOAA NCDC Datasets

There are many NOAA NCDC datasets. All data sources work, except NEXRAD2 and NEXRAD3, for an unknown reason. This relates to ncdc_*() functions only.

DatasetDescriptionStart DateEnd DateData Coverage
GHCNDDaily Summaries1763-01-012019-09-241.00
GSOMGlobal Summary of the Month1763-01-012019-08-011.00
GSOYGlobal Summary of the Year1763-01-012019-01-011.00
NEXRAD2Weather Radar (Level II)1991-06-052019-09-240.95
NEXRAD3Weather Radar (Level III)1994-05-202019-09-220.95
NORMAL_ANNNormals Annual/Seasonal2010-01-012010-01-011.00
NORMAL_DLYNormals Daily2010-01-012010-12-311.00
NORMAL_HLYNormals Hourly2010-01-012010-12-311.00
NORMAL_MLYNormals Monthly2010-01-012010-12-011.00
PRECIP_15Precipitation 15 Minute1970-05-122014-01-010.25
PRECIP_HLYPrecipitation Hourly1900-01-012014-01-011.00

NOAA NCDC Attributes

Each NOAA dataset has a different set of attributes that you can potentially get back in your search. See http://www.ncdc.noaa.gov/cdo-web/datasets for detailed info on each dataset. We provide some information on the attributes in this package; see the vignette for attributes to find out more

NCDC Authentication

You'll need an API key to use the NOAA NCDC functions (those starting with ncdc*()) in this package (essentially a password). Go to https://www.ncdc.noaa.gov/cdo-web/token to get one. You can't use this package without an API key.

Once you obtain a key, there are two ways to use it.

a) Pass it inline with each function call (somewhat cumbersome)

ncdc(datasetid = 'PRECIP_HLY', locationid = 'ZIP:28801', datatypeid = 'HPCP', limit = 5, token =  "YOUR_TOKEN")

b) Alternatively, you might find it easier to set this as an option, either by adding this line to the top of a script or somewhere in your .rprofile

options(noaakey = "KEY_EMAILED_TO_YOU")

c) You can always store in permamently in your .Rprofile file.

Installation

GDAL

You'll need GDAL installed first. You may want to use GDAL >= 0.9-1 since that version or later can read TopoJSON format files as well, which aren't required here, but may be useful. Install GDAL:

Then when you install the R package rgdal (rgeos also requires GDAL), you'll most likely need to specify where you're gdal-config file is on your machine, as well as a few other things. I have an OSX Mavericks machine, and this works for me (there's no binary for Mavericks, so install the source version):

install.packages("https://cran.r-project.org/src/contrib/rgdal_0.9-1.tar.gz", repos = NULL, type="source", configure.args = "--with-gdal-config=/Library/Frameworks/GDAL.framework/Versions/1.10/unix/bin/gdal-config --with-proj-include=/Library/Frameworks/PROJ.framework/unix/include --with-proj-lib=/Library/Frameworks/PROJ.framework/unix/lib")

The rest of the installation should be easy. If not, let us know.

Stable version from CRAN

install.packages("rnoaa")

or development version from GitHub

remotes::install_github("ropensci/rnoaa")

Load rnoaa

library('rnoaa')

NCDC v2 API data

Fetch list of city locations in descending order

ncdc_locs(locationcategoryid='CITY', sortfield='name', sortorder='desc')
#> $meta
#> $meta$totalCount
#> [1] 1987
#> 
#> $meta$pageCount
#> [1] 25
#> 
#> $meta$offset
#> [1] 1
#> 
#> 
#> $data
#>       mindate    maxdate                  name datacoverage            id
#> 1  1892-08-01 2019-07-31            Zwolle, NL       1.0000 CITY:NL000012
#> 2  1901-01-01 2019-09-22            Zurich, SZ       1.0000 CITY:SZ000007
#> 3  1957-07-01 2019-09-22         Zonguldak, TU       1.0000 CITY:TU000057
#> 4  1906-01-01 2019-09-22            Zinder, NG       0.9025 CITY:NG000004
#> 5  1973-01-01 2019-09-22        Ziguinchor, SG       1.0000 CITY:SG000004
#> 6  1938-01-01 2019-09-22         Zhytomyra, UP       0.9723 CITY:UP000025
#> 7  1948-03-01 2019-09-22        Zhezkazgan, KZ       0.9302 CITY:KZ000017
#> 8  1951-01-01 2019-09-22         Zhengzhou, CH       1.0000 CITY:CH000045
#> 9  1941-01-01 2019-06-30          Zaragoza, SP       1.0000 CITY:SP000021
#> 10 1936-01-01 2009-06-17      Zaporiyhzhya, UP       1.0000 CITY:UP000024
#> 11 1957-01-01 2019-09-22          Zanzibar, TZ       0.8016 CITY:TZ000019
#> 12 1973-01-01 2019-09-22            Zanjan, IR       0.9105 CITY:IR000020
#> 13 1893-01-01 2019-09-24     Zanesville, OH US       1.0000 CITY:US390029
#> 14 1912-01-01 2019-09-22             Zahle, LE       0.9819 CITY:LE000004
#> 15 1951-01-01 2019-09-22           Zahedan, IR       0.9975 CITY:IR000019
#> 16 1860-12-01 2019-09-22            Zagreb, HR       1.0000 CITY:HR000002
#> 17 1929-07-01 2019-09-22         Zacatecas, MX       1.0000 CITY:MX000036
#> 18 1947-01-01 2019-09-22 Yuzhno-Sakhalinsk, RS       1.0000 CITY:RS000081
#> 19 1893-01-01 2019-09-24           Yuma, AZ US       1.0000 CITY:US040015
#> 20 1942-02-01 2019-09-24   Yucca Valley, CA US       1.0000 CITY:US060048
#> 21 1885-01-01 2019-09-24      Yuba City, CA US       1.0000 CITY:US060047
#> 22 1998-02-01 2019-09-22            Yozgat, TU       0.9993 CITY:TU000056
#> 23 1893-01-01 2019-09-24     Youngstown, OH US       1.0000 CITY:US390028
#> 24 1894-01-01 2019-09-24           York, PA US       1.0000 CITY:US420024
#> 25 1869-01-01 2019-09-24        Yonkers, NY US       1.0000 CITY:US360031
#> 
#> attr(,"class")
#> [1] "ncdc_locs"

Get info on a station by specifying a dataset, locationtype, location, and station

ncdc_stations(datasetid='GHCND', locationid='FIPS:12017', stationid='GHCND:USC00084289')
#> $meta
#> NULL
#> 
#> $data
#>   elevation    mindate    maxdate latitude                  name
#> 1      17.7 1899-02-01 2019-09-23 28.80286 INVERNESS 3 SE, FL US
#>   datacoverage                id elevationUnit longitude
#> 1            1 GHCND:USC00084289        METERS -82.31266
#> 
#> attr(,"class")
#> [1] "ncdc_stations"

Search for data

out <- ncdc(datasetid='NORMAL_DLY', stationid='GHCND:USW00014895', datatypeid='dly-tmax-normal', startdate = '2010-05-01', enddate = '2010-05-10')

See a data.frame

head( out$data )
#> # A tibble: 6 x 5
#>   date                datatype        station           value fl_c 
#>   <chr>               <chr>           <chr>             <int> <chr>
#> 1 2010-05-01T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   652 S    
#> 2 2010-05-02T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   655 S    
#> 3 2010-05-03T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   658 S    
#> 4 2010-05-04T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   661 S    
#> 5 2010-05-05T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   663 S    
#> 6 2010-05-06T00:00:00 DLY-TMAX-NORMAL GHCND:USW00014895   666 S

Note that the value column has strangely large numbers for temperature measurements. By convention, rnoaa doesn't do any conversion of values from the APIs and some APIs use seemingly odd units.

You have two options here:

  1. Use the add_units parameter on ncdc to have rnoaa attempt to look up the units. This is a good idea to try first.

  2. Consult the documentation for whiechever dataset you're accessing. In this case, GHCND has a README which indicates TMAX is measured in tenths of degrees Celcius.

See a data.frame with units

As mentioned above, you can use the add_units parameter with ncdc() to ask rnoaa to attempt to look up units for whatever data you ask it to return. Let's ask rnoaa to add units to some precipitation (PRCP) data:

with_units <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-10-31', limit=500, add_units = TRUE)
head( with_units$data )
#> # A tibble: 6 x 9
#>   date          datatype station      value fl_m  fl_q  fl_so fl_t  units  
#>   <chr>         <chr>    <chr>        <int> <chr> <chr> <chr> <chr> <chr>  
#> 1 2010-05-01T0… PRCP     GHCND:USW00…     0 T     ""    0     2400  mm_ten…
#> 2 2010-05-02T0… PRCP     GHCND:USW00…    30 ""    ""    0     2400  mm_ten…
#> 3 2010-05-03T0… PRCP     GHCND:USW00…    51 ""    ""    0     2400  mm_ten…
#> 4 2010-05-04T0… PRCP     GHCND:USW00…     0 T     ""    0     2400  mm_ten…
#> 5 2010-05-05T0… PRCP     GHCND:USW00…    18 ""    ""    0     2400  mm_ten…
#> 6 2010-05-06T0… PRCP     GHCND:USW00…    30 ""    ""    0     2400  mm_ten…

From the above output, we can see that the units for PRCP values are "mm_tenths" which means tenths of a millimeter. You won't always be so lucky and sometimes you will have to look up the documentation on your own.

Plot data, super simple, but it's a start

out <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-05-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out, breaks="1 month", dateformat="%d/%m")

Note that PRCP values are in units of tenths of a millimeter, as we found out above.

More plotting

You can pass many outputs from calls to the noaa function in to the ncdc_plot function.

out1 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-03-01', enddate = '2010-05-31', limit=500)
out2 <- ncdc(datasetid='GHCND', stationid='GHCND:USW00014895', datatypeid='PRCP', startdate = '2010-09-01', enddate = '2010-10-31', limit=500)
ncdc_plot(out1, out2, breaks="45 days")

Get table of all datasets

ncdc_datasets()
#> $meta
#> $meta$offset
#> [1] 1
#> 
#> $meta$count
#> [1] 11
#> 
#> $meta$limit
#> [1] 25
#> 
#> 
#> $data
#>                     uid    mindate    maxdate                        name
#> 1  gov.noaa.ncdc:C00861 1763-01-01 2019-09-24             Daily Summaries
#> 2  gov.noaa.ncdc:C00946 1763-01-01 2019-08-01 Global Summary of the Month
#> 3  gov.noaa.ncdc:C00947 1763-01-01 2019-01-01  Global Summary of the Year
#> 4  gov.noaa.ncdc:C00345 1991-06-05 2019-09-24    Weather Radar (Level II)
#> 5  gov.noaa.ncdc:C00708 1994-05-20 2019-09-22   Weather Radar (Level III)
#> 6  gov.noaa.ncdc:C00821 2010-01-01 2010-01-01     Normals Annual/Seasonal
#> 7  gov.noaa.ncdc:C00823 2010-01-01 2010-12-31               Normals Daily
#> 8  gov.noaa.ncdc:C00824 2010-01-01 2010-12-31              Normals Hourly
#> 9  gov.noaa.ncdc:C00822 2010-01-01 2010-12-01             Normals Monthly
#> 10 gov.noaa.ncdc:C00505 1970-05-12 2014-01-01     Precipitation 15 Minute
#> 11 gov.noaa.ncdc:C00313 1900-01-01 2014-01-01        Precipitation Hourly
#>    datacoverage         id
#> 1          1.00      GHCND
#> 2          1.00       GSOM
#> 3          1.00       GSOY
#> 4          0.95    NEXRAD2
#> 5          0.95    NEXRAD3
#> 6          1.00 NORMAL_ANN
#> 7          1.00 NORMAL_DLY
#> 8          1.00 NORMAL_HLY
#> 9          1.00 NORMAL_MLY
#> 10         0.25  PRECIP_15
#> 11         1.00 PRECIP_HLY
#> 
#> attr(,"class")
#> [1] "ncdc_datasets"

Get data category data and metadata

ncdc_datacats(locationid = 'CITY:US390029')
#> $meta
#> $meta$totalCount
#> [1] 39
#> 
#> $meta$pageCount
#> [1] 25
#> 
#> $meta$offset
#> [1] 1
#> 
#> 
#> $data
#>                     name            id
#> 1    Annual Agricultural        ANNAGR
#> 2     Annual Degree Days         ANNDD
#> 3   Annual Precipitation       ANNPRCP
#> 4     Annual Temperature       ANNTEMP
#> 5    Autumn Agricultural         AUAGR
#> 6     Autumn Degree Days          AUDD
#> 7   Autumn Precipitation        AUPRCP
#> 8     Autumn Temperature        AUTEMP
#> 9               Computed          COMP
#> 10 Computed Agricultural       COMPAGR
#> 11           Degree Days            DD
#> 12      Dual-Pol Moments DUALPOLMOMENT
#> 13             Echo Tops       ECHOTOP
#> 14      Hydrometeor Type   HYDROMETEOR
#> 15            Miscellany          MISC
#> 16                 Other         OTHER
#> 17               Overlay       OVERLAY
#> 18         Precipitation          PRCP
#> 19          Reflectivity  REFLECTIVITY
#> 20    Sky cover & clouds           SKY
#> 21   Spring Agricultural         SPAGR
#> 22    Spring Degree Days          SPDD
#> 23  Spring Precipitation        SPPRCP
#> 24    Spring Temperature        SPTEMP
#> 25   Summer Agricultural         SUAGR
#> 
#> attr(,"class")
#> [1] "ncdc_datacats"

Tornado data

The function tornadoes() simply gets all the data. So the call takes a while, but once done, is fun to play with.

shp <- tornadoes()
#> OGR data source with driver: ESRI Shapefile 
#> Source: "/Users/sckott/Library/Caches/rnoaa/tornadoes/1950-2017-torn-aspath", layer: "1950-2017-torn-aspath"
#> with 62519 features
#> It has 22 fields
library('sp')
plot(shp)

HOMR metadata

In this example, search for metadata for a single station ID

homr(qid = 'COOP:046742')

Storm data

Get storm data for the year 2010

storm_data(year = 2010)

GEFS data

Get forecast for a certain variable.

res <- gefs("Total_precipitation_surface_6_Hour_Accumulation_ens", lat = 46.28125, lon = -116.2188)
head(res$data)
#>   Total_precipitation_surface_6_Hour_Accumulation_ens lon lat ens time1
#> 1                                                   0 244  46   0     6
#> 2                                                   0 244  46   1     6
#> 3                                                   0 244  46   2     6
#> 4                                                   0 244  46   3     6
#> 5                                                   0 244  46   4     6
#> 6                                                   0 244  46   5     6

Argo buoys data

There are a suite of functions for Argo data, a few egs:

# Spatial search - by bounding box
argo_search("coord", box = c(-40, 35, 3, 2))

# Time based search
argo_search("coord", yearmin = 2007, yearmax = 2009)

# Data quality based search
argo_search("coord", pres_qc = "A", temp_qc = "A")

# Search on partial float id number
argo_qwmo(qwmo = 49)

# Get data
argo(dac = "meds", id = 4900881, cycle = 127, dtype = "D")

CO-OPS data

Get daily mean water level data at Fairport, OH (9063053)

coops_search(station_name = 9063053, begin_date = 20150927, end_date = 20150928,
             product = "daily_mean", datum = "stnd", time_zone = "lst")
#> $metadata
#> $metadata$id
#> [1] "9063053"
#> 
#> $metadata$name
#> [1] "Fairport"
#> 
#> $metadata$lat
#> [1] "41.7597"
#> 
#> $metadata$lon
#> [1] "-81.2811"
#> 
#> 
#> $data
#>            t       v   f
#> 1 2015-09-27 174.430 0,0
#> 2 2015-09-28 174.422 0,0

Contributors

Meta

  • Please report any issues or bugs.
  • License: MIT
  • Get citation information for rnoaa in R doing citation(package = 'rnoaa')
  • Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Copy Link

Version

Install

install.packages('rnoaa')

Monthly Downloads

256

Version

0.9.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Scott Chamberlain

Last Published

September 26th, 2019

Functions in rnoaa (0.9.0)

bsw

Blended sea winds (BSW)
arc2

Arc2 - Africa Rainfall Climatology version 2
buoy

Get NOAA buoy data from the National Buoy Data Center
check_response

Check response from NOAA, including status codes, server error messages, mime-type, etc.
caching

Clear cached files
coops

Get NOAA co-ops data
autoplot.meteo_coverage

autoplot method for meteo_coverage objects
check_response_swdi

Check response from NOAA SWDI service, including status codes, server error messages, mime-type, etc.
argo

Get Argo buoy data
cpc_prcp

Precipitation data from NOAA Climate Prediction Center (CPC)
ersst

NOAA Extended Reconstructed Sea Surface Temperature (ERSST) data
erddap_clear_cache

This function is defunct.
gefs

Get GEFS ensemble forecast data for a specific lat/lon.
ghcnd

Get all GHCND data from a single weather site
deg2rad

Convert from degrees to radians
homr

Historical Observing Metadata Repository (HOMR) station metadata
homr_definitions

Historical Observing Metadata Repository (HOMR) station metadata - definitions
erddap_search

This function is defunct.
erddap_table

This function is defunct.
meteo_process_geographic_data

Calculate the distances between a location and all available stations
meteo_pull_monitors

Pull GHCND weather data for multiple weather monitors
ghcnd_splitvars

Split variables in data returned from ghcnd
ghcnd_search

Get a cleaned version of GHCND data from a single weather site
fipscodes

FIPS codes for US states.
isd_stations_search

Search for NOAA ISD/ISH station data from NOAA FTP server.
lcd

Local Climitalogical Data from NOAA
erddap_grid

This function is defunct.
isd_read

Read NOAA ISD/ISH local file
meteo_tidy_ghcnd

Create a tidy GHCND dataset from a single monitor
erddap_data

This function is defunct.
erddap_datasets

This function is defunct.
meteo_tidy_ghcnd_element

Restructure element of ghcnd_search list
ncdc_leg_site_info

This function is defunct.
noaa_seaice

This function is defunct.
noaa_stations

This function is defunct.
ncdc_leg_sites

This function is defunct.
ncdc_datacats

Get possible data categories for a particular datasetid, locationid, stationid, etc.
ncdc_datasets

Search NOAA datasets
meteo_show_cache

Show the meteo cache directory
ghcnd_states

Get meta-data on the GHCND daily data
erddap_info

This function is defunct.
ghcnd_stations

Get information on the GHCND weather stations
ncdc_locs_cats

Get metadata about NOAA location categories.
ncdc_datatypes

Get possible data types for a particular dataset
vis_miss

Visualize missingness in a dataframe
ncdc_plot

Plot NOAA climate data.
type_summ

Type summary
ncdc_leg_data

This function is defunct.
isd_stations

Get NOAA ISD/ISH station data from NOAA FTP server.
sea_ice

Get sea ice data.
rnoaa-package

rnoaa
noaa_datacats

This function is defunct.
noaa_datasets

This function is defunct.
sea_ice_tabular

Sea ice tabular data
seaice

This function is defunct.
noaa_datatypes

This function is defunct.
is.ncdc_data

Check object class
meteo_clear_cache

Clear meteo cached files
isd

Get and parse NOAA ISD/ISH data
ncdc

Search for and get NOAA NCDC data
meteo_coverage

Determine the "coverage" for a station data frame
meteo_distance

Find all monitors within a radius of a location
meteo_nearby_stations

Find weather monitors near locations
noaa_locs

This function is defunct.
swdi

Get NOAA data for the severe weather data inventory (swdi).
ncdc_leg_variables

This function is defunct.
meteo_spherical_distance

Calculate the distance between two locations
ncdc_locs

Get metadata about NOAA NCDC locations.
noaa_combine

This function is defunct.
ncdc_combine

Coerce multiple outputs to a single data.frame object.
seaiceeurls

Make all urls for sea ice data
noaa_locs_cats

This function is defunct.
noaa

This function is defunct.
storm_shp

Get NOAA wind storm tabular data, metadata, or shp files from IBTrACS
noaa_plot

This function is defunct.
ncdc_stations

Get metadata about NOAA NCDC stations.
storm_columns

NOAA storm column descriptions for data from IBTrACS
readshpfile

Function to read shapefiles
ncdc_theme

Theme for plotting NOAA data
rnoaa-defunct

Defunct functions in rnoaa
storm_names

NOAA storm names from IBTrACS
storm_events

NOAA Storm Events data
tornadoes

Get NOAA tornado data.
theme_ice

ggplot2 map theme