set.seed(2022)
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)
out.indx <- sim.data$out.indx
indx.test <- sample(c(1:400)[-out.indx], 120)
indx.train <- c(1:400)[-indx.test]
Y <- sim.data$Y
X <- sim.data$X
Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){
X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]
}
gp <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)
round(mean((Y.test - pred.tau)^2), 4) # 1.868 (tau method)
Run the code above in your browser using DataLab