# NOT RUN {
library(robregcc)
library(magrittr)
data(simulate_robregcc_sp)
X <- simulate_robregcc_sp$X;
y <- simulate_robregcc_sp$y
C <- simulate_robregcc_sp$C
n <- nrow(X); p <- ncol(X); k <- nrow(C)
# Predictor transformation due to compositional constraint:
# Equivalent to performing centered log-ratio transform
Xt <- svd(t(C))$u %>% tcrossprod() %>% subtract(diag(p),.) %>% crossprod(t(X),.)
#
Xm <- colMeans(Xt)
Xt <- scale(Xt,Xm,FALSE) # centering of predictors
mean.y <- mean(y)
y <- y - mean.y # centering of response
Xt <- cbind(1,Xt) # accounting for intercept in predictor
C <- cbind(0,C) # accounting for intercept in constraint
bw <- c(0,rep(1,p)) # weight matrix to not penalize intercept
example_seed <- 2*p+1
set.seed(example_seed)
# Breakdown point for tukey Bisquare loss function
b1 = 0.5 # 50% breakdown point
cc1 = 1.567 # corresponding model parameter
# b1 = 0.25; cc1 = 2.937
# }
# NOT RUN {
# Initialization [PSC analysis for compositional data]
control <- robregcc_option(maxiter=1000,tol = 1e-4,lminfac = 1e-7)
fit.init <- cpsc_sp(Xt, y,alp=0.4, cfac=2, b1=b1,cc1=cc1,C,bw,1,control)
# Robust procedure
# control parameters
control <- robregcc_option()
beta.wt <- fit.init$betaR # Set weight for model parameter beta
beta.wt[1] <- 0
control$gamma = 2 # gamma for constructing weighted penalty
control$spb = 40/p # fraction of maximum non-zero model parameter beta
control$outMiter = 1000 # Outer loop iteration
control$inMiter = 3000 # Inner loop iteration
control$nlam = 50 # Number of tuning parameter lambda to be explored
control$lmaxfac = 1 # Parameter for constructing sequence of lambda
control$lminfac = 1e-8 # Parameter for constructing sequence of lambda
control$tol = 1e-20; # tolrence parameter for converging [inner loop]
control$out.tol = 1e-16 # tolerence parameter for convergence [outer loop]
control$kfold = 5 # number of fold of crossvalidation
# Robust regression using adaptive elastic net penalty [case III, Table 1]
fit.ada <- robregcc_sp(Xt,y,C, beta.init=fit.init$betaR,
gamma.init = fit.init$residualR,
beta.wt=abs(beta.wt),
gamma.wt = abs(fit.init$residualR),
control = control,
penalty.index = 1, alpha = 0.95)
# Robust regression using lasso penalty [Huber equivalent] [case II, Table 1]
fit.soft <- robregcc_sp(Xt,y,C, beta.init=NULL, gamma.init = NULL,
beta.wt=bw, gamma.wt = NULL,
control = control, penalty.index = 2,
alpha = 0.95)
# Robust regression using hard thresholding penalty [case I, Table 1]
control$lmaxfac = 1e2 # Parameter for constructing sequence of lambda
control$lminfac = 1e-3 # Parameter for constructing sequence of lambda
fit.hard <- robregcc_sp(Xt,y,C, beta.init=fit.init$betaf,
gamma.init = fit.init$residuals,
beta.wt=bw, gamma.wt = NULL,
control = control, penalty.index = 3,
alpha = 0.95)
residuals(fit.ada)
residuals(fit.soft)
residuals(fit.hard)
# }
Run the code above in your browser using DataLab