covRob(data, corr = FALSE, distance = TRUE, na.action = na.fail, estim = "auto", control = covRob.control(estim, ...), ...)corr = TRUE then the estimated correlation matrix is computed.distance = TRUE the Mahalanobis distances are computed.na.fail produces an error if missing values are present. An alternative is na.omit which deletes observations that contain one or more missing values.covRob.control for the possible control parameters and their default settings. This argument is ignored when estim = "auto".estim != "auto".covRob" with components:cov and center. Only present if distance = TRUE in the call.corr = TRUE then cov and raw.cov contain robust estimates of the correlation matrix of x.covRob.control,
cov,
fastmcd,
donostah,
fastcov,
rockem.data(stack.dat)
covRob(stack.dat, estim = "mcd", quan = .75, ntrial = 1000)Run the code above in your browser using DataLab