Learn R Programming

robustBLME (version 0.1.3)

kdeFSBT: Full Significance Bayesian Testing

Description

Performs Full Significance Bayesian Testing (FSBT) for univariate sharp null hypothesis based on a posterior sample. The marginal posterior density is obtained by kernel density estimation from sim.sample.

Usage

kdeFSBT(H0, sim.sample)

Arguments

H0

a scalar value under the null hypothesis.

sim.sample

a sample from the marginal posterior distribution.

Value

double

References

Pereira, C. A. d. B., Stern, J. M. and Wechsler, S. (2008) Can a significance test be genuinely Bayesian? Bayesian Analysis 3, 79-100.

Examples

Run this code
# NOT RUN {
x <-  rnorm(1000, 0, 1)
kdeFSBT(-1, x)

# }

Run the code above in your browser using DataLab