Learn R Programming

robustSingleCell (version 0.1.1)

visualize.cluster.similarity.stats: Plot Similarity Results

Description

Perform hierarchical clustering and plot cluster similarities according to dendrogram.

Usage

visualize.cluster.similarity.stats(environment, similarity,
  hclust.resolution = 8, margins = c(40, 40))

Arguments

environment

environment object

similarity

similarity matrix defined in compare.cluster.similarity or get.robust.cluster.similarity

hclust.resolution

clustering resolution to impose on hclust cutree function

margins

The margins to the plot

Examples

Run this code
# NOT RUN {
LCMV1 <- setup_LCMV_example()
LCMV1 <- get.variable.genes(LCMV1, min.mean = 0.1, min.frac.cells = 0,
min.dispersion.scaled = 0.1)
LCMV1 <- PCA(LCMV1)
LCMV1 <- cluster.analysis(LCMV1)
types = rbind(
data.frame(type='Tfh',gene=c('Tcf7','Cxcr5','Bcl6')),
data.frame(type='Th1',gene=c('Cxcr6','Ifng','Tbx21')),
data.frame(type='Tcmp',gene=c('Ccr7','Bcl2','Tcf7')),
data.frame(type='Treg',gene=c('Foxp3','Il2ra')),
data.frame(type='Tmem',gene=c('Il7r','Ccr7')),
data.frame(type='CD8',gene=c('Cd8a')),
data.frame(type='CD4', gene = c("Cd4")),
data.frame(type='Cycle',gene=c('Mki67','Top2a','Birc5'))
)
summarize(LCMV1)
cluster_names <- get.cluster.names(LCMV1, types, min.fold = 1.0, max.Qval = 0.01)
LCMV1 <- set.cluster.names(LCMV1, names = cluster_names)
LCMV2 <- setup_LCMV_example("LCMV2")
LCMV2 <- get.variable.genes(LCMV2, min.mean = 0.1, min.frac.cells = 0,
min.dispersion.scaled = 0.1)
LCMV2 <- PCA(LCMV2)
LCMV2 <- cluster.analysis(LCMV2)
summarize(LCMV2)
cluster_names <- get.cluster.names(LCMV2, types, min.fold = 1.0, max.Qval = 0.01)
LCMV2 <- set.cluster.names(LCMV2, names = cluster_names)
pooled_env <- setup_pooled_env()
pooled_env <- read.preclustered.datasets(pooled_env)
pooled_env <- PCA(pooled_env, clear.previously.calculated.clustering = F)
summarize(pooled_env, contrast = "datasets")
cluster.similarity <- assess.cluster.similarity(pooled_env)
similarity <- cluster.similarity$similarity
map <- cluster.similarity$map
filtered.similarity <- get.robust.cluster.similarity(
   pooled_env, similarity, min.sd = qnorm(.9), max.q.val = 0.01, rerun = F)
visualize.cluster.similarity.stats(pooled_env, filtered_similarity)
# }

Run the code above in your browser using DataLab