set.seed(12345)
## Create data with x1 and x2 correlated at 0.10
dat <- genCorrelatedData(rho=.1, stde=7)
mcGraph3(dat$x1, dat$x2, dat$y, theta = 0)
dat2 <- genCorrelatedData(rho = 0, stde = 7)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = 0, phi = 10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = 30, phi = 10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30, phi = 10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30, phi = -10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30, phi = -15)
## Run regressions with not-strongly correlated data
modset1 <- list()
for(i in 1:20){
dat2 <- genCorrelatedData(rho = .1, stde = 7)
summary(lm( y ~ x1 + x2 , data = dat2))
modset1[[i]] <- mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30)
}
## Run regressions with strongly correlated data
modset2 <- list()
for(i in 1:20){
dat2 <- genCorrelatedData(rho = .981, stde = 7)
summary(lm( y ~ x1 + x2 , data = dat2))
modset2[[i]] <- mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30)
}
dat3 <- genCorrelatedData(rho = .981, stde = 100, beta=c(0.1, 0.2, 0.3, -0.1))
mcGraph3(dat3$x1, dat3$x2, dat3$y, theta=-10, interaction = TRUE)
Run the code above in your browser using DataLab