Learn R Programming

ror (version 0.8)

utagms: UTA^{GMS} MCDA solver

Description

Implements UTA^{GMS} robust ordinal regression: computes either the necessary- or the possible relation. Assumes ascending preferences, i.e. higher criterion evaluation means higher preferability (=better).

Usage

utagms(performances, preferences, necessary=TRUE,
strictVF=FALSE)

Arguments

performances
m x n performance matrix with m alternatives and n criteria.
preferences
k x 2 matrix of preferences statements (row indices of alternatives in performance matrix). Each row r is a preference statements meaning that preferences[k,1] is preferred to preferences[k,2].
necessary
Whether to compute the necessary relation (TRUE) or the possible one (FALSE).
strictVF
Whether to use sctrictly increasing (TRUE) or monotonously increasing (FALSE) value functions.

See Also

rorsmaa,ror-package

Examples

Run this code
library(ror)

## Example with 3 alternatives and 3 criteria
performances <- matrix(c(1.0, 1.0, 1.0, 2.0, 1.0, 1.1, 2.0, 0.5, 3.0), ncol=3, byrow=TRUE)
## a3 > a2
preferences <- matrix(c(3, 2), ncol=2, byrow=TRUE)

## Necessary relation
necrel <- utagms(performances, preferences, necessary=TRUE, strictVF=TRUE)
## Possible relation
posrel <- utagms(performances, preferences, necessary=FALSE, strictVF=FALSE)

## Sanity check, the necessary relation should be
## T F F
## T T F
## T T T
stopifnot(necrel == matrix(c(TRUE, FALSE, FALSE, TRUE, TRUE, FALSE,
TRUE, TRUE, TRUE), ncol=3, byrow=TRUE))

## Sanity check, the possible relation should be
## T T F
## T T F
## T T T
stopifnot(posrel == matrix(c(TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE), ncol=3, byrow=TRUE))

Run the code above in your browser using DataLab