ROSE random forest estimator for the partially linear instrumental variable model
roseRF_pliv(
y_formula,
y_learner,
y_pars = list(),
x_formula,
x_learner,
x_pars = list(),
IV1_formula = NA,
IV1_learner = NA,
IV1_pars = list(),
IV2_formula = NA,
IV2_learner = NA,
IV2_pars = list(),
IV3_formula = NA,
IV3_learner = NA,
IV3_pars = list(),
IV4_formula = NA,
IV4_learner = NA,
IV4_pars = list(),
IV5_formula = NA,
IV5_learner = NA,
IV5_pars = list(),
data,
K = 5,
S = 1,
max.depth = 10,
num.trees = 500,
min.node.size = max(10, ceiling(0.01 * (K - 1)/K * nrow(data))),
replace = TRUE,
sample.fraction = 0.8
)A list containing:
thetaThe estimator of \(\theta_0\).
stderrorHuber robust estimate of the standard error of the \(\theta_0\)-estimator.
coefficientsTable of \(\theta_0\) coefficient estimator, standard error, z-value and p-value.
a two-sided formula object describing the regression model for \(\mathbb{E}[Y|Z]\).
a string specifying the regression method to fit the regression of \(Y\) on \(Z\) as given by y_formula (e.g. randomforest, xgboost, neuralnet, gam).
a list containing hyperparameters for the y_learner chosen. Default is an empty list, which performs hyperparameter tuning.
a two-sided formula object describing the regression model for \(\mathbb{E}[X|Z]\).
a string specifying the regression method to fit the regression of \(X\) on \(Z\) as given by x_formula (e.g. randomforest, xgboost, neuralnet, gam).
a list containing hyperparameters for the y_learner chosen. Default is an empty list, which performs hyperparameter tuning.
a two-sided formula object for the model \(\mathbb{E}[V_1(X)|Z]\).
a string specifying the regression method for \(\mathbb{E}[V_1(X)|Z]\) estimation.
a list containing hyperparameters for the IV1_learner chosen.
a two-sided formula object for the model \(\mathbb{E}[V_2|Z]\). Default is no formula / regression (i.e. \(J=1\))
a string specifying the regression method for \(\mathbb{E}[V_2(X)|Z]\) estimation.
a list containing hyperparameters for the IV2_learner chosen.
a two-sided formula object for the model \(\mathbb{E}[V_3(X)|Z]\). Default is no formula / regression (i.e. \(J=1\)).
a string specifying the regression method for \(\mathbb{E}[V_3(X)|Z]\) estimation.
a list containing hyperparameters for the IV3_learner chosen.
a two-sided formula object for the model \(\mathbb{E}[V_4(X)|Z]\). Default is no formula / regression (i.e. \(J=1\))
a string specifying the regression method for \(\mathbb{E}[V_4(X)|Z]\) estimation.
a list containing hyperparameters for the IV4_learner chosen.
a two-sided formula object for the model \(\mathbb{E}[V_5(X)|Z]\). Default is no formula / regression (i.e. \(J=1\))
a string specifying the regression method for \(\mathbb{E}[V_5(X)|Z]\) estimation.
a list containing hyperparameters for the IV5_learner chosen.
a data frame containing the variables for the partially linear model.
the number of folds used for \(K\)-fold cross-fitting. Default is 5.
the number of repeats to mitigate the randomness in the estimator on the sample splits used for \(K\)-fold cross-fitting. Default is 5.
Maximum depth parameter used for ROSE random forests. Default is 5.
Number of trees used for a single ROSE random forest. Default is 50.
Minimum node size of a leaf in each tree. Default is max(10,ceiling(0.01 (K-1)/K nrow(data))).
Whether sampling for a single random tree are performed with (bootstrap) or without replacement. Default is TRUE (i.e. bootstrap).
Proportion of data used for each random tree. Default is 0.8.