Learn R Programming

rotations (version 0.1)

Cayley: The symmetric Cayley distribution

Description

Density, distribution function and random generation for the Cayley distribution with concentration kappa $\kappa$.

Usage

dcayley(r, kappa = 1, nu = NULL, Haar = TRUE)

pcayley(q, kappa = 1, nu = NULL, lower.tail = TRUE)

rcayley(n, kappa = 1, nu = NULL)

Arguments

r,q
vector of quantiles.
n
number of observations. If length(n)>1, the length is taken to be the number required.
kappa
concentration parameter.
nu
circular variance, can be used in place of kappa.
Haar
logical; if TRUE density is evaluated with respect to the Haar measure.
lower.tail
logical; if TRUE (default) probabilities are $P(X\leq x)$ otherwise, $P(X>x)$.

Value

  • dcayleygives the density
  • pcayleygives the distribution function
  • rcayleygenerates a vector of random deviates

Details

The symmetric Cayley distribution with concentration kappa (or circular variance nu) had density $$C_C(r |\kappa)=\frac{1}{\sqrt{\pi}} \frac{\Gamma(\kappa+2)}{\Gamma(\kappa+1/2)}2^{-(\kappa+1)}(1+\cos r)^\kappa(1-\cos r).$$

References

Schaeben H (1997). "A Simple Standard Orientation Density Function: The Hyperspherical de la Vallee Poussin Kernel." Phys. Stat. Sol. (B), 200, pp. 367-376.

Leon C, e JM and Rivest L (2006). "A statistical model for random rotations." Journal of Multivariate Analysis, 97(2), pp. 412-430.

See Also

Angular-distributions for other distributions in the rotations package.