Density, distribution function and random generation for
the circular-von Mises distribution with concentration
kappa $\kappa$.
Usage
dvmises(r, kappa = 1, nu = NULL, Haar = T)
pvmises(q, kappa = 1, nu = NULL, lower.tail = TRUE)
rvmises(n, kappa = 1, nu = NULL)
Arguments
r,q
vector of quantiles
n
number of observations. If length(n)>1,
the length is taken to be the number required.
kappa
concentration parameter.
nu
circular variance, can be used in place of
kappa.
Haar
logical; if TRUE density is evaluated with
respect to the Haar measure.
lower.tail
logical; if TRUE (default),
probabilities are $P(X \le x)$ otherwise, $P(X >
x)$.
Value
dvmisesgives the density
pvmisesgives
the distribution function
rvmisesgenerates
random deviates
Details
The circular von Mises-based distribution has the density
$$C_\mathrm{M}(r|\kappa)=\frac{1}{2\pi
\mathrm{I_0}(\kappa)}e^{\kappa
cos(r)}.$$ where $\mathrm{I_0}(\kappa)$
is the modified bessel function of order 0.