Compute the logarithm of a rotation matrix. The result
is a $3\times 3$ skew-symmetric matrix. This
function maps the lie group $SO(3)$ into its tangent
space, which is the space of all $3\times 3$
skew symmetric matrices, which is the lie algerbra
$so(3)$. For details see e.g. Moakher (2002).
Usage
## S3 method for class 'SO3':
log(x, ...)
Arguments
x
$n\times 9$ matrix where each row
corresponds to a random rotation matrix.
...
additional arguements.
Value
Skew symmetric matrix $\log(R)$.
References
Moakher M (2002). "Means and averaging in the group of
rotations." SIAM Journal on Matrix Analysis and
Applications, 24(1), pp. 1-16.