Learn R Programming

rotations (version 0.2)

bayes.mean: Parameter estimates based on non-informative Bayes

Description

Use non-informative Bayes to estimate the central orientation and concentration parameter of a sample of rotations.

Usage

bayes.mean(x, type, S0, kappa0, tuneS, tuneK, burn_in,
    m = 5000)

## S3 method for class 'SO3': bayes.mean(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

## S3 method for class 'Q4': bayes.mean(x, type, S0, kappa0, tuneS, tuneK, burn_in, m = 5000)

Arguments

x
$n\times p$ matrix where each row corresponds to a random rotation in matrix ($p=9$) or quaternion ($p=4$) form.
type
Angular distribution assumed on R. Options are Cayley, Fisher or Mises
S0
initial estimate of central orientation
kappa0
initial estimate of concentration parameter
tuneS
central orientation tuning parameter, concentration of proposal distribution
tuneK
concentration tuning parameter, standard deviation of proposal distribution
burn_in
number of draws to use as burn-in
m
number of draws to keep from posterior distribution

Value

  • list of
  • ShatDraws from the posterior distribution for central orientation S
  • kappaDraws from the posterior distribution for concentration parameter kappa

Details

The procedures detailed in Bingham et al. (2009) and Bingham et al. (2010) are implemented to get draws from the posterior distribution for the central orientation and concentration parameters for a sample of 3D rotations. A uniform prior on SO(3) is used for the central orientation and the appropriate Jeffreys prior is used for the concentration parameter.

References

Bingham MA, Vardeman SB and Nordman DJ (2009). "Bayes one-sample and one-way random effects analyses for 3-D orientations with application to materials science." Bayesian Analysis, 4(3), pp. 607-629.

Bingham MA, Nordman DJ and Vardeman SB (2010). "Finite-sample investigation of likelihood and Bayes inference for the symmetric von Mises-Fisher distribution." Computational Statistics & Data Analysis, 54(5), pp. 1317-1327.

See Also

mean.SO3, median.SO3

Examples

Run this code
Rs<-ruars(20,rcayley,kappa=4)
ests<-bayes.mean(Rs,type='Cayley',S0=mean(Rs),kappa0=4,tuneS=39,tuneK=.8,burn_in=100,m=5000)

Run the code above in your browser using DataLab