# NOT RUN {
design <- getDesignGroupSequential()
dataMeans <- getDataset(
n = c(10,10),
means = c(1.96,1.76),
stDevs = c(1.92,2.01))
getAnalysisResults(design, dataMeans)
# produces:
#
# Analysis results (group sequential design):
# Stages : 1, 2, 3
# Information rates : 0.333, 0.667, 1.000
# Critical values : 3.471, 2.454, 2.004
# Futility bounds (non-binding) : -Inf, -Inf
# Cumulative alpha spending : 0.0002592, 0.0071601, 0.0250000
# Stage levels : 0.0002592, 0.0070554, 0.0225331
# Effect sizes : 1.96, 1.86, NA
# Test statistics : 3.228, 2.769, NA
# p-values : 0.005177, 0.010895, NA
# Overall test statistics : 3.228, 4.342, NA
# Overall p-values : 0.0051766, 0.0001757, NA
# Futility bounds for power : NA
# Actions : continue, reject and stop, NA
# Theta H0 : 0
# CRP : 0.3177, 0.9434, NA
# Planned sample size : NA, NA, NA
# Planned allocation ratio : 1
# Assumed effect : NA
# Assumed standard deviation : 1
# Conditional power : NA, NA, NA
# RCIs (lower) : -1.236, 0.702, NA
# RCIs (upper) : 5.16, 3.02, NA
# Repeated p-values : 0.081766, 0.001825, NA
# Final stage : 2
# Final p-value : NA, 0.0004094, NA
# Final CIs (lower) : NA, 0.654, NA
# Final CIs (upper) : NA, 2.36, NA
# Median unbiased estimate : NA, 1.51, NA
# }
Run the code above in your browser using DataLab