Creates a trial design set object and returns it.
getDesignSet(...)
designs
or design
and one or more design parameters, e.g., deltaWT = c(0.1, 0.3, 0.4)
.
design
The master design (optional, you need to specify an
additional parameter that shall be varied).
designs
The designs to compare (optional, you need to specify the variable variedParameters
).
Returns a TrialDesignSet
object.
The following generics (R generic functions) are available for this result object:
names
to obtain the field names,
length
to obtain the number of design,
print
to print the object,
summary
to display a summary of the object,
plot
to plot the object,
as.data.frame
to coerce the object to a data.frame
,
Click on the link of a generic in the list above to go directly to the help documentation of
the rpact
specific implementation of the generic.
Note that you can use the R function methods
to get all the methods of a generic and
to identify the object specific name of it, e.g.,
use methods("plot")
to get all the methods for the plot
generic.
There you can find, e.g., plot.AnalysisResults
and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults
.
Specify a master design and one or more design parameters or a list of designs.
# NOT RUN {
# Example 1
design <- getDesignGroupSequential(alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))
# }
# NOT RUN {
if (require(ggplot2)) plot(designSet, type = 1)
# }
# NOT RUN {
# Example 2 (shorter script)
design <- getDesignGroupSequential(alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))
# }
# NOT RUN {
if (require(ggplot2)) plot(designSet, type = 1)
# }
# NOT RUN {
# Example 3 (use of designs instead of design)
d1 <- getDesignGroupSequential(alpha = 0.05, kMax = 2,
sided = 1, beta = 0.2, typeOfDesign = "asHSD",
gammaA = 0.5, typeBetaSpending = "bsHSD", gammaB = 0.5)
d2 <- getDesignGroupSequential(alpha = 0.05, kMax = 4,
sided = 1, beta = 0.2, typeOfDesign = "asP",
typeBetaSpending = "bsP")
designSet <- getDesignSet (designs = c(d1, d2),
variedParameters = c("typeOfDesign", "kMax"))
# }
# NOT RUN {
if (require(ggplot2)) plot(designSet, type = 8, nMax = 20)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab