Learn R Programming

⚠️There's a newer version (1.0.14) of this package.Take me there.

rpf (version 0.10)

Response Probability Functions

Description

The purpose of this package is to factor out logic and math common to Item Response Theory fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

20,661

Version

0.10

License

GPL (>= 3)

Maintainer

Joshua Pritikin

Last Published

July 5th, 2013

Functions in rpf (0.10)

An introduction

rpf - Response Probability Functions
rpf.1dim.moment

Calculate cell central moments
Class rpf.mdim.grm

The multidimensional graded response item model.
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
Class rpf.mdim

The base class for multi-dimensional response probability functions.
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
rpf.drm

Create a dichotomous response model
science

Liking for Science dataset
rpf.1dim.residual

Calculate residuals
rpf.rparam

Generates item parameters
rpf.ogive

The ogive constant
rpf.mean.info1

Find the point where an item provides mean maximum information
rpf.1dim.stdresidual

Calculate standardized residuals
Class rpf.1dim.grm

The unidimensional graded response item model.
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
rpf.mean.info

Find the point where an item provides mean maximum information
rpf.mcm

Create a multiple-choice response model
kct

Knox Cube Test dataset
rpf.ot2000.chisq1

Compute S-Chi-squared fit statistic for 1 item
rpf.id_of

Convert an IRT item model name to an ID
write.flexmirt

Write a flexMIRT PRM file
rpf.1dim.fit

Calculate item and person Rasch fit statistics
Class rpf.base

The base class for response probability functions.
rpf.sample

Randomly sample response patterns given a list of items
rpf.dLL

Item parameter derivatives
rpf.numSpec

Length of the item model vector
rpf.nrm

Create a nominal response model
rpf.rescale

Rescale item parameters
rpf.grm

Create a graded response model
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
read.flexmirt

Read a flexMIRT PRM file
Class rpf.1dim

The base class for 1 dimensional response probability functions.
rpf.ot2000.chisq

Compute S-Chi-squared fit statistic for a set of items
rpf.numParam

Length of the item parameter vector
rpf.dTheta

Item derivatives with respect to ability
rpf.info

Map an item model, item parameters, and person trait score into a information vector
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).