50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

⚠️There's a newer version (1.0.14) of this package.Take me there.

rpf (version 0.28)

Response Probability Functions

Description

The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

23,955

Version

0.28

License

GPL (>= 3)

Maintainer

Last Published

April 3rd, 2014

Functions in rpf (0.28)

rpf.drm

Create a dichotomous response model
logit

Transform from [0,1] to the reals
science

Liking for Science dataset
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
Class rpf.mdim

The base class for multi-dimensional response probability functions.
chen.thissen.1997

Computes local dependence indices for all pairs of items
rpf.ot2000.chisq1

Compute S-Chi-squared fit statistic for 1 item
rpf.1dim.fit

Calculate item and person Rasch fit statistics
rpf.modify

Create a similar item specification with the given number of factors
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
ptw2011.gof.test

Compute the P value that the observed and expected tables come from the same distribution
rpf.1dim.moment

Calculate cell central moments
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.mean.info1

Find the point where an item provides mean maximum information
rpf.1dim.stdresidual

Calculate standardized residuals
rpf.nrm

Create a nominal response model
rpf.sample

Randomly sample response patterns given a list of items
Class rpf.1dim.grm

The unidimensional graded response item model.
Class rpf.base

The base class for response probability functions.
kct

Knox Cube Test dataset
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
rpf.numParam

Length of the item parameter vector
rpf.numSpec

Length of the item model vector
rpf.dTheta

Item derivatives with respect to ability
rpf.info

Map an item model, item parameters, and person trait score into a information vector
Class rpf.mdim.grm

The multidimensional graded response item model.
An introduction

rpf - Response Probability Functions
rpf.1dim.residual

Calculate residuals
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
unpack.2tier

Unpack a two-tier model
rpf.paramInfo

Retrieve a description of the given parameter
Class rpf.1dim

The base class for 1 dimensional response probability functions.
rpf.id_of

Convert an IRT item model name to an ID
rpf.grm

Create a graded response model
rpf.rescale

Rescale item parameters
rpf.dLL

Item parameter derivatives
ordinal.gamma

Compute the ordinal gamma association statistic
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
rpf.ogive

The ogive constant
write.flexmirt

Write a flexMIRT PRM file
rpf.rparam

Generates item parameters
rpf.mcm

Create a multiple-choice response model
rpf.mean.info

Find the point where an item provides mean maximum information
rpf.ot2000.chisq

Compute S-Chi-squared fit statistic for a set of items
read.flexmirt

Read a flexMIRT PRM file
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).