Learn R Programming

⚠️There's a newer version (1.0.14) of this package.Take me there.

rpf (version 0.36)

Response Probability Functions

Description

The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

20,661

Version

0.36

License

GPL (>= 3)

Maintainer

Joshua Pritikin

Last Published

July 26th, 2014

Functions in rpf (0.36)

SitemFit

Compute the S fit statistic for a set of items
Class rpf.1dim

The base class for 1 dimensional response probability functions.
ChenThissen1997

Computes local dependence indices for all pairs of items
science

Liking for Science dataset
compressDataFrame

Compress a data frame into unique rows and frequencies
rpf.info

Map an item model, item parameters, and person trait score into a information vector
SitemFit1

Compute the S fit statistic for 1 item
rpf.paramInfo

Retrieve a description of the given parameter
rpf.numSpec

Length of the item model vector
write.flexmirt

Write a flexMIRT PRM file
kct

Knox Cube Test dataset
rpf.rparam

Generates item parameters
rpf.rescale

Rescale item parameters
logit

Transform from [0,1] to the reals
itemOutcomeBySumScore

Produce an item outcome by observed sum-score table
rpf.dLL

Item parameter derivatives
rpf.mean.info1

Find the point where an item provides mean maximum information
ordinal.gamma

Compute the ordinal gamma association statistic
orderCompletely

Order a data.frame by missingness and all columns
read.flexmirt

Read a flexMIRT PRM file
Class rpf.mdim

The base class for multi-dimensional response probability functions.
Class rpf.1dim.grm

The unidimensional graded response item model.
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
rpf.mean.info

Find the point where an item provides mean maximum information
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.mdim.grm

The multidimensional graded response item model.
rpf.nrm

Create a nominal response model
expandDataFrame

Expand summary table of patterns and frequencies
rpf.drm

Create a dichotomous response model
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
rpf.sample

Randomly sample response patterns given a list of items
EAPscores

Compute EAP scores
rpf.1dim.residual

Calculate residuals
sumScoreEAPTest

Conduct the sum-score EAP distribution test
as.IFAgroup

Convert an OpenMx MxModel object into an IFA group
rpf.dTheta

Item derivatives with respect to the location in the latent space
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
An introduction

rpf - Response Probability Functions
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
rpf.modify

Create a similar item specification with the given number of factors
rpf.id_of

Convert an rpf item model name to an ID
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
multinomialFit

Multinomial fit test
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
Class rpf.base

The base class for response probability functions.
rpf.1dim.stdresidual

Calculate standardized residuals
sumScoreEAP

Compute the sum-score EAP table
crosstabTest

Monte-Carlo test for cross-tabulation tables
ptw2011.gof.test

Compute the P value that the observed and expected tables come from the same distribution
rpf.ogive

The ogive constant
rpf.1dim.fit

Calculate item and person Rasch fit statistics
omitMostMissing

Omit items with the most missing data
rpf.1dim.moment

Calculate cell central moments
rpf.mcm

Create a multiple-choice response model
tabulateRows

Tabulate data.frame rows
observedSumScore

Compute the observed sum-score
rpf.grm

Create a graded response model
rpf.numParam

Length of the item parameter vector