Learn R Programming

⚠️There's a newer version (1.0.14) of this package.Take me there.

rpf (version 0.48)

Response Probability Functions

Description

The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

20,661

Version

0.48

License

GPL (>= 3)

Maintainer

Joshua Pritikin

Last Published

August 11th, 2015

Functions in rpf (0.48)

expandDataFrame

Expand summary table of patterns and frequencies
EAPscores

Compute EAP scores
fromFactorLoading

Convert factor loadings to response function slopes
Class rpf.mdim

The base class for multi-dimensional response probability functions.
omitMostMissing

Omit items with the most missing data
rpf.numParam

Length of the item parameter vector
crosstabTest

Monte-Carlo test for cross-tabulation tables
rpf.rescale

Rescale item parameters
SitemFit1

Compute the S fit statistic for 1 item
Class rpf.1dim.grm

The unidimensional graded response item model.
rpf.1dim.residual

Calculate residuals
rpf.1dim.stdresidual

Calculate standardized residuals
compressDataFrame

Compress a data frame into unique rows and frequencies
ptw2011.gof.test

Compute the P value that the observed and expected tables come from the same distribution
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.base

The base class for response probability functions.
Class rpf.1dim

The base class for 1 dimensional response probability functions.
rpf.1dim.moment

Calculate cell central moments
sumScoreEAPTest

Conduct the sum-score EAP distribution test
rpf.dLL

Item parameter derivatives
stripData

Strip data and scores from an IFA group
observedSumScore

Compute the observed sum-score
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
rpf.dTheta

Item derivatives with respect to the location in the latent space
multinomialFit

Multinomial fit test
fromFactorThreshold

Convert factor thresholds to response function intercepts
rpf.numSpec

Length of the item model vector
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
tabulateRows

Tabulate data.frame rows
rpf.paramInfo

Retrieve a description of the given parameter
itemOutcomeBySumScore

Produce an item outcome by observed sum-score table
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
LSAT7

Description of LSAT7 data
rpf.mcm

Create a multiple-choice response model
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
rpf.ogive

The ogive constant
read.flexmirt

Read a flexMIRT PRM file
rpf.sample

Randomly sample response patterns given a list of items
ChenThissen1997

Computes local dependence indices for all pairs of items
ordinal.gamma

Compute the ordinal gamma association statistic
logit

Transform from [0,1] to the reals
sumScoreEAP

Compute the sum-score EAP table
orderCompletely

Order a data.frame by missingness and all columns
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
toFactorThreshold

Convert response function intercepts to factor thresholds
as.IFAgroup

Convert an OpenMx MxModel object into an IFA group
rpf.id_of

Convert an rpf item model name to an ID
SitemFit

Compute the S fit statistic for a set of items
An introduction

rpf - Response Probability Functions
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
omitItems

Omit the given items
rpf.mean.info1

Find the point where an item provides mean maximum information
science

Liking for Science dataset
rpf.mean.info

Find the point where an item provides mean maximum information
rpf.modify

Create a similar item specification with the given number of factors
rpf.grm

Create a graded response model
rpf.rparam

Generates item parameters
bestToOmit

Identify the columns with most missing data
toFactorLoading

Convert response function slopes to factor loadings
rpf.1dim.fit

Calculate item and person Rasch fit statistics
Class rpf.mdim.grm

The multidimensional graded response item model.
kct

Knox Cube Test dataset
rpf.nrm

Create a nominal response model
LSAT6

Description of LSAT6 data
rpf.info

Map an item model, item parameters, and person trait score into a information vector
write.flexmirt

Write a flexMIRT PRM file
rpf.drm

Create a dichotomous response model