Learn R Programming

⚠️There's a newer version (1.0.14) of this package.Take me there.

rpf (version 0.51)

Response Probability Functions

Description

The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable.

Copy Link

Version

Install

install.packages('rpf')

Monthly Downloads

20,661

Version

0.51

License

GPL (>= 3)

Maintainer

Joshua Pritikin

Last Published

December 16th, 2015

Functions in rpf (0.51)

SitemFit1

Compute the S fit statistic for 1 item
Class rpf.mdim

The base class for multi-dimensional response probability functions.
rpf.rescale

Rescale item parameters
rpf.info

Map an item model, item parameters, and person trait score into a information vector
rpf.paramInfo

Retrieve a description of the given parameter
bestToOmit

Identify the columns with most missing data
rpf.grm

Create a graded response model
omitItems

Omit the given items
Class rpf.1dim.drm

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
rpf.sample

Randomly sample response patterns given a list of items
fromFactorThreshold

Convert factor thresholds to response function intercepts
orderCompletely

Order a data.frame by missingness and all columns
ordinal.gamma

Compute the ordinal gamma association statistic
science

Liking for Science dataset
observedSumScore

Compute the observed sum-score
rpf.mcm

Create a multiple-choice response model
compressDataFrame

Compress a data frame into unique rows and frequencies
expandDataFrame

Expand summary table of patterns and frequencies
Class rpf.1dim.grm

The unidimensional graded response item model.
Class rpf.base

The base class for response probability functions.
Class rpf.mdim.graded

The base class for multi-dimensional graded response probability functions.
crosstabTest

Monte-Carlo test for cross-tabulation tables
rpf.mean.info1

Find the point where an item provides mean maximum information
rpf.1dim.residual

Calculate residuals
rpf.mean.info

Find the point where an item provides mean maximum information
tabulateRows

Tabulate data.frame rows
toFactorThreshold

Convert response function intercepts to factor thresholds
multinomialFit

Multinomial fit test
rpf.id_of

Convert an rpf item model name to an ID
rpf.modify

Create a similar item specification with the given number of factors
sumScoreEAP

Compute the sum-score EAP table
ChenThissen1997

Computes local dependence indices for all pairs of items
sumScoreEAPTest

Conduct the sum-score EAP distribution test
write.flexmirt

Write a flexMIRT PRM file
omitMostMissing

Omit items with the most missing data
LSAT6

Description of LSAT6 data
itemOutcomeBySumScore

Produce an item outcome by observed sum-score table
read.flexmirt

Read a flexMIRT PRM file
rpf.numParam

Length of the item parameter vector
rpf.dLL

Item parameter derivatives
as.IFAgroup

Convert an OpenMx MxModel object into an IFA group
logit

Transform from [0,1] to the reals
Class rpf.mdim.mcm

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).
Class rpf.mdim.grm

The multidimensional graded response item model.
rpf.1dim.moment

Calculate cell central moments
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector
rpf.numSpec

Length of the item model vector
LSAT7

Description of LSAT7 data
SitemFit

Compute the S fit statistic for a set of items
rpf.1dim.stdresidual

Calculate standardized residuals
Class rpf.1dim.graded

The base class for 1 dimensional graded response probability functions.
rpf.prob

Map an item model, item parameters, and person trait score into a probability vector
rpf.drm

Create a dichotomous response model
ptw2011.gof.test

Compute the P value that the observed and expected tables come from the same distribution
rpf.dTheta

Item derivatives with respect to the location in the latent space
Class rpf.1dim.lmp

Unidimensional logistic function of a monotonic polynomial.
toFactorLoading

Convert response function slopes to factor loadings
EAPscores

Compute EAP scores
rpf.1dim.fit

Calculate item and person Rasch fit statistics
rpf.lmp

Create logistic function of a monotonic polynomial (LMP) model
rpf.nrm

Create a nominal response model
rpf.ogive

The ogive constant
Class rpf.mdim.drm

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
rpf.rparam

Generates item parameters
stripData

Strip data and scores from an IFA group
kct

Knox Cube Test dataset
An introduction

rpf - Response Probability Functions
fromFactorLoading

Convert factor loadings to response function slopes
Class rpf.1dim

The base class for 1 dimensional response probability functions.
Class rpf.mdim.nrm

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).