Last chance! 50% off unlimited learning
Sale ends in
This is an example of building up a desired pre-prepared pipeline fragment from relop nodes.
pick_top_k(
source,
...,
partitionby = NULL,
orderby = NULL,
reverse = NULL,
k = 1L,
order_expression = "row_number()",
order_column = "row_number",
keep_order_column = TRUE,
env = parent.frame()
)
relop tree or data.frame source.
force later arguments to bind by name.
partitioning (window function) column names.
character, ordering (in window function) column names.
character, reverse ordering (in window function) of these column names.
integer, number of rows to limit to in each group.
character, command to compute row-order/rank.
character, column name to write per-group rank in (no ties).
logical, if TRUE retain the order column in the result.
environment to look for values in.
# NOT RUN {
# by hand logistic regression example
scale <- 0.237
d <- mk_td("survey_table",
c("subjectID", "surveyCategory", "assessmentTotal"))
optree <- d %.>%
extend(.,
probability %:=%
exp(assessmentTotal * scale)) %.>%
normalize_cols(.,
"probability",
partitionby = 'subjectID') %.>%
pick_top_k(.,
partitionby = 'subjectID',
orderby = c('probability', 'surveyCategory'),
reverse = c('probability', 'surveyCategory')) %.>%
rename_columns(., 'diagnosis' %:=% 'surveyCategory') %.>%
select_columns(., c('subjectID',
'diagnosis',
'probability')) %.>%
orderby(., 'subjectID')
cat(format(optree))
# }
Run the code above in your browser using DataLab