# NOT RUN {
library(rrMixture)
#-----------------------------------------------------------#
# Real Data Example: Tuna Data
#-----------------------------------------------------------#
require(bayesm)
data(tuna)
tunaY <- log(tuna[, c("MOVE1", "MOVE2", "MOVE3", "MOVE4",
"MOVE5", "MOVE6", "MOVE7")])
tunaX <- tuna[, c("NSALE1", "NSALE2", "NSALE3", "NSALE4",
"NSALE5", "NSALE6", "NSALE7",
"LPRICE1", "LPRICE2", "LPRICE3", "LPRICE4",
"LPRICE5", "LPRICE6", "LPRICE7")]
tunaX <- cbind(intercept = 1, tunaX)
# Rank-penalized estimation
# }
# NOT RUN {
tuna.rp <- rrmix(K = 2, X = tunaX, Y = tunaY, lambda = 3, est = "RP",
seed = 100, n.init = 100)
summary(tuna.rp)
plot(tuna.rp)
# }
# NOT RUN {
# Adaptive nuclear norm penalized estimation
# }
# NOT RUN {
tuna.annp <- rrmix(K = 2, X = tunaX, Y = tunaY, lambda = 3, gamma = 2, est = "ANNP",
seed = 100, n.init = 100)
summary(tuna.annp)
plot(tuna.annp)
# }
# NOT RUN {
#-----------------------------------------------------------#
# Simulation: Two Components Case
#-----------------------------------------------------------#
# Simulation Data
K2mod <- rrmix.sim.norm(K = 2, n = 100, p = 5, q = 5, rho = .5,
b = 1, shift = 1, r.star = c(1, 3), sigma = c(1, 1),
pr = c(.5, .5), seed = 1215)
# Rank-penalized estimation
# }
# NOT RUN {
K2.rp <- rrmix(K = 2, X = K2mod$X, Y = K2mod$Y, lambda = 1,
seed = 17, est = "RP", ind.true = K2mod$ind.true,
para.true = K2mod$para.true, n.init = 100)
summary(K2.rp)
plot(K2.rp)
# }
# NOT RUN {
# Adaptive nuclear norm penalized estimation
# }
# NOT RUN {
K2.annp <- rrmix(K = 2, X = K2mod$X, Y = K2mod$Y, lambda = 1,
seed = 17, est = "ANNP", ind.true = K2mod$ind.true,
para.true = K2mod$para.true, n.init = 100)
summary(K2.annp)
plot(K2.annp)
# }
Run the code above in your browser using DataLab